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Notation, useful results and abbreviations

W (t) Denote standard a Brownian motion by {W (t) : t � 0}. We may also write Wt instead of W (t).

Ac Given a set A, we denote the complement of A (elements which are not in A) by Ac.

E[X] Given a probability space (⌦,F , P ), we denote the expectation with respect to P by E[ · ], i.e., for a
random variable X : ⌦ ! R, E[X] =

R
⌦ X(!) dP (!). If X is a random variable with a probability

density function of f(x), then the expected value is defined as E[X] =
R
R xf(x) dx.

Cov(X,Y ) Given two random variables X and Y defined on a probability space (⌦,F , P ), we denote the covariance
by Cov(X,Y ) = E[(X � E[X])(Y � E[Y ])]. In particular, if X = Y , we denote the variance of X by
Var(X).

N (�, µ2) For µ 2 R, � 2 R+, we denote the normal distribution with mean � and variance �2 by N (�, µ2).

X ⇠ D If a random variable X has distribution D, we write X ⇠ D.

X
d
= Y If two random variables X and Y have the same distribution, we write X

d
= Y .

X 2 L
1 A random variable X defined on (⌦,F ,P) is integrable, which we denote by X 2 L

1, if E[|X|] < 1.

E[X|G] Given a random variable X 2 L
1 defined on (⌦,F , P ) and H a sub-�-algebra of F , we denote the

conditional expectation of X with respect to G by E[X|H].

[X,Y ]t Given two (stochastic) processes X = {Xt : t � 0} and Y = {Yt : t � 0}, the pathwise covariation of X
and Y over [0, t], denoted by [X,Y ]t, is defined as [X,Y ]t = limn!1

Pn
k=0(Xti/n �Xt(i�1)/n)(Yti/n �

Yt(i�1)/n). In particular, if X = Y , we denote the quadratic variation of X just by [X]t.

E[esX ] If X ⇠ N (µ,�), the moment generating function of X at point s 2 R is given by E[esX ] = esµ+
1
2�

2s2 .

a.s. Almost surely.

i.i.d. Independent and identically distributed.

SDE Stochastic differential equation.

w.l.o.g. Without lost of generality.

w.r.t With respect to.

.

The resolution of the exercises, when presented, has a yellowish background.

3



Chapter 1

Introduction to Derivatives Pricing

1. Let B(t, T ) denote the cost at time t of a risk-free 1 euro bond, at time T . Assume that the interest rate is a
deterministic function. Show that the absence of arbitrage requires that

B(0, 1)B(1, 2) = B(0, 2).

First we prove that if B(0, 1)B(1, 2) > B(0, 2), then we would have an arbitrage. Then we construct our
portfolio as follows:

– at t = 0, you agree to sell B(1, 2), which means that you receive B(0, 1)B(1, 2) for that product. Buy
B(0, 2). Then at time t = 0, you have B(0, 1)B(1, 2)�B(0, 2) > 0.

– at t = 2, you receive your bond (the one that you have contracted at time t = 0), which means that you
receive 1 e, and at the same time you need to give 1 eto the buyer of the bond B(1, 2)

So with this strategy you would have a positive profit, with probability one, which would be an arbitrage
possibility.
Now assume that B(0, 1)B(1, 2) < B(0, 2). Then we construct our portfolio as follows:

– You sell one bond with maturity 2, receiving B(0, 2), and you buy B(1, 2), for which you need to pay
B(0, 1)B(1, 2). So at time t = 0, you have B(0, 2)�B(0, 1)B(1, 2) > 0.

– At time t = 2, you get 1 e(from the bond that you bought), and you need to pay 1 e(from the bond that
you sold).

Again you end up with a positive profit, and consequently you have an arbitrage possibility.

2. For each of the following portfolios, draw the expiry payoff diagram and explain what view of the market holding
this position expresses:

a) One long call and one long put options, both with the same strike (straddle strategy).

b) One short forward and two long calls, all with the same strike price.

c) One long call and two long puts, all with the same strike price (strip strategy).

d) One long put and two long calls, all with the same strike price (strap strategy).

e) One long call with strike price K2 and one long put, with strike price K1.

f) One long call with strike price K1, one long call with strike price K2 and two short calls, both with strike
price (K1 +K2)/2 (butterfly strategy).
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CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING

a)

K

K

Stock price at maturity

P
ro

fit
/L

os
s

b)

K

K

Stock price at maturity

P
ro

fit
/L

os
s

c)

K

K

2K

Stock price at maturity

P
ro

fit
/L

os
s

5



CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING
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CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING
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3. Let S0 denote the present price of a specified stock. In a forward agreement, one agrees at time 0 to pay the
amount F at time T for one share of the stock that will be delivered at the time of the payment. Derive the
non-arbitrage value of F .

If S0 denotes the current value of the share, then in order to avoid arbitrage-possibilities one must have:

F = S0e
rT

as:

– if F < S0erT : then the forward price is too low; in that case you should have a long position in this
contract. Then short sell one share; sell it by S0 and put the money in the bank. At the maturity date
buy the share, use part of the money that you have in the bank (which now worths S0erT ) in order to pay
the share and return the share to the short-seller. At the end you still earn money, without any initial
investment, and therefore you have an arbitrage possibility.

– if F > S0erT : the forward price is too large and therefore you should have a short position in this contract.
Then borrow S0 to the bank and go to the market and buy the share by S0. At the maturity of the contract
sell this share by F and return S0erT to the bank (your loan); as F > S0erT , you still earn free-risk money,
without any initial investment, and therefore you have an arbitrage possibility.

4. Suppose that ci is the price of an European call option with maturity T and strike price Ki, with i = 1, 2, 3.
Assume that K1 < K2 < K3, with K2 = K1+K3

2 . Consider a porfolio consisting of one long position with strike
price K1, one long position with strike price K3 and two short positions with strike price K2, each.

a) Give the payoff at the maturity date T of this portfolio.
b) Prove that c2  0.5(c1 + c3).

a) If you do not take into account the prices of these contracts, the payoff at the maturity of this porfolio is
as follows:

– If ST < K1: options are not exercised. So your payoff is zero.
– If K1 < ST < K2: You exercise option 1, and therefore your payoff is ST � K1 > 0; the maximum

payoff occurs when ST = K2 and therefore is equal to (K2 �K1)/2.
– If K2 < ST < K3: You exercise option 1 and the two options 2 are exercised by the holder. Then

your payoff is (ST �K1) � 2(ST �K2) = K3 � ST > 0; the maximum payoff occurs when ST = K2

and therefore is equal to K3 �K2 = (K3 �K1)/2.
– If ST > K3: all the options are exercised. Then your payoff is: (ST �K1)+(ST �K3)�2(ST �K2) = 0.

b) In all the situations the payoff is larger or equal to zero. Therefore in order to avoid an arbitrage possibility
you have to assume that the gain of these contracts at time 0 (which is equal to 2c2�(c1+c3)) is negative,
ie,

c2 < 0.5(c1 + c3).
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CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING

5. A two-year European call option at 90 Euros strike is quoted at 5 Euros and a two-year European call option
at 95 Euros strike is quoted at 5.1 Euros. Design a trading strategy to lock profits (as the two prices allow
arbitrage!).

It is clear that the second option is overpriced (a higher strike price should have a lower price). Therefore in
order to have an arbitrage opportunity you should be the writer of the second option (short position) and the
holder of the first one (long position). Then, as the maturities are the same:

i) If S2 < 90: both options are not exercised; gain=(5.1� 5)e2r (r is the annual interest rate).

ii) If 90  S2  95: you exercise your option. Then you buy the share by 90 Euros and immediately you sell
it by S2, earning 0.1e2r + (S2 � 90).

iii) If 95 < S2: then both options are exercised. You buy one share by 90 and you immediately return it to
the holder of the second contract, by 95. Then your profit is 0.1e2r + 5.

Then in all the situations you have a positive profit, and thus you have a clear arbitrage opportunity.

6. Consider the following combined strategy, defined on the same underlying asset: buy two European call options
with strike price K1 and K3 (with K1 < K3) and sell two European call options with strike price K2 =
0.5(K1 +K2).

a) Plot the payoff of this combined strategy (usually known as butterfly spread).

b) Use put-call parity to show that the cost of a butterfly spread created from European puts is equal to the
cost of a butterfly spread created from European calls.

b) Assume that the cost of these three calls is c1, c2 and c3, whose strike prices are K1,K2 and K3, respectively.
Now assuming the put-call parity, it follows that if we denote the corresponding puts prices by p1, p2 and
p3, respectively, it follows that:

c1 +K1e
�rT = p1 + St

c2 +K2e
�rT = p2 + St

c3 +K3e
�rT = p3 + St

Therefore it follows that

(c1 + c3 � 2c2) + (K1 +K3 � 2K2)e
�rT = (p1 + p3 � 2p2) + (ST + ST � 2ST )

But as K2 = (K1 +K3)/2, then it follows that

c1 + c3 � 2c2 = p1 + p3 � 2p2

ie, the cost of this strategy involving call options is the same if you use put options.

7. A European call option and an European put option on a stock that expires in one year have both a strike price
of 44 Euros. The current stock price is 40 Euros and the one-year risk free interest rate is 10%. The price of the
call is 10 Euros and the price of the put is 7 Euros. Design an arbitrage possibility.

Let us first check if the put-call parity holds, ie.,

c+Ke�rt ?
= p+ S0

In this case c + Ke�rt = 10 + 44e�0.10 = 49.8128, whereas p + S = 47, meaning that the call is overpriced.
Then you have the following arbitrage possibility: go short in the first contract and go long in the second
contract. Then that means that at time 0 you receive 10 � 7 = 3 Euros, which you put in the bank; at the
end of the first year you own 3.3 euros. If S1 < 44, then no one exercises his rights, and thus your net profit
is 3.3; if S1 > 44, both options are exercised, and therefore your net profit is also 3.3. In either cases you have
an arbitrage opportunity.

8. Let S(t) denote the price of a given security at time t. All of the following options have exercise time T and
(unless stated otherwise) strike price K. Give the payoff at time t that is earned by an investor who:

a) owns one call having exercise price K1 and has sold one put having exercise price K2;
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CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING

b) owns two calls and has sold one share of the security;

c) owns one share of the security and has sold one call.

9. A bond has face value 500 Euros, and coupons equal to 30 Euros, paid at the end of each year. The maturity date
for such product is 5 years. Prove that the value of the bond is 528.142, assuming that the annually compounded
interest rate is 5%.

10. A chooser option is an agreement where the owner of the option has the right to choose at a fixed decision time
T1 < T2 (where T2 denotes the maturity) whether the option is to be a call or a put, with a common strike price
K, and remaining time to expiry T2 � T1.

a) Let c and p denote, respectively, the value of the call and of the put underlying the option at time T1.
Argue that the value of the chooser option at time T1 is given by max(c, p).

b) Derive a relation between c and p.

c) Prove that you can replicate this chooser option using a call with strike price K and maturity T2, and a
put option, with strike price Ke�r(T2�T1) and maturity T1. Derive the payoff of this strategy at time T2.

d) Introducing the notation C(t, T, C) (resp. P (t, T, c)) for the time t value of a call (resp. put) option with
the expiry T and strike price c, then for any t = 0, 1, . . . , T0, the time t value Vch(t) of the chooser option
can be represented as

Vch(t) = P (t, T, c) + C(t, T0, c(1 + r)�(T�T0))

or, equivalently,
Vch(t) = C(t, T, c) + P (t, T0, c(1 + r)�(T�T0)).

e) If pT0 denotes the price of the put option at the decision time T0, prove that T0 is given by:

T0 = pT0 +


S(T0)�

c

(1 + r)T�T0

�+

f) How can you replicate a choose option using a call and a put option?

11. Consider a T multi-period binomial model, and let X denote the net profit of an European call option. Moreover,
denote the fair price of such contract at time t by ⇧(t,X), for t  T . Argue that

⇧(T,X) = X.

Using arbitrage arguments, we easily prove the result. For example, if ⇧(T,X) < X, then we buy the call at
time T ; we get a stock, and we sell it right away, earning X�⇧(T,X), without any initial investment and with
100% sure of getting a positive profit. Similar argument stands on the other case.

12. Let X be the gain from a portfolio strategy with initial cost x, such X � 0 in every state of the world. Prove
that x � 0.

13. Draw a diagram showing the profit of the following strategy: 1 long stock, 1 long call, with strike price K1 and
2 short call, with strike price K2.

14. A one-month European put option on a non-dividend-paying stock is currently selling for 2.5e. The stock price
is 47e, the strike price is 50e, and the risk-free interest rate (continuously compounded) is 6% per annum. What
opportunities are there for an arbitrageur?

The arbitrage opportunity is as follows: borrow 47 + 2.5 = 49.5 eto the bank, that you will pay in one-month
(therefore you need to return back 49.5⇥ 1 + 0.06

12 = 49.7475. Then with this money buy the put and buy one
stock. At the end of the month, one of two things may happen:

– The stock price is lower than 50e: in that case you exercise the put-option, selling the stock by 50e. You
return back to the bank 49.7475, having a positive net profit.

– The stock price is larger than 50e: then you don’t exercise your option but you go to the market and sell
you stock, receiving more than 50e. Then you still have a positive net profit.

In any case you have a positive gain, with zero investment, and thus you have an arbitrage opportunity.

9



CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING

15. A European call and put option on the same security both expire in three months, both have a strike price of
20 e, and both are traded for the price 3 e. If the nominal continuously compounded interest rate is 10% and
the stock price is currently 25 e, identify an arbitrage.

We first check if the put-call parity holds in this case:

C +Ke�0.10⇥ 3
12 = 3 + 20e�3 = 22.5062 6= p+ S(0) = 28

Thus the call-option is under-priced, so that in order to identify an arbitrage, we should buy a call and sell a
put. (...)

16. A call and a put option over the same underlying asset whose present value is 110 Euros, with the same maturity
and same strike price 100 Euros, are priced 12 and 5 Euros, respectively. Assuming there the interest rate is
zero, design an arbitrage possibility. Would it still be possible to design an arbitrage possibility if the strike price
of the call would be less than 100 Euros?
Using the put-call parity, we conclude that the call is undervalued and/or the price is overvalued. Therefore
one may create the following arbitrage possibility: short-sell one stock, sell it in the market, and with the
money buy one call and sell one put. So at t = 0 you have 110� 12+ 5 = 113. Now we examine what happens
on expiration. If ST > K, then you exercise your call, buying a stock by 100 euros, returning back to the
short-seller. The net profit is then 3 Euros. If ST < K, then the put is exercised. In that case you are obliged
to buy the stock, paying 100 euros and returning it back to the short-seller. Anyway, your net profit is 3 Euros,
no matter what happens.
If the strike price of the call would be less than 100 euros, then its price would be even cheaper, and for that
reason the put would be even overvalued. So the arbitrage possibility would be still possible, and would be the
same, with the same strategy (but with higher or equal net profit).

17. Consider two bank accounts, B1 = {B1(t), t > 0} and B2 = {B2(t), t > 0} such that:

dB1(t) = rB1(t)dt; dB2(t) = µB2(t)dt

Furthermore let S = {S(t), t � 0} denote the stock price of a certain asset.

a) Prove that if µ 6= r then one has arbitrage.

b) Consider now a call option and a put option on the same underlying asset, both with maturity T and strike
price K = S(0)erT . Assume that the price of the call is c and the price of the put is p, with c and p given
by:

c = p+ x

for a certain amount x. Prove that if x > 0 one has arbitrage.

c) Show that the following is an upper bound for p:

p  S0.

a) Assume, w.l.o.g., that µ > r, and one-year continuously compounded. Then the following is an arbitrage
possibility: borrow K euros of B1, and invest in type B2 assets, for one year, say (in fact time here is
whatever you wish!). At the end of the one-year contract you have Keµ and you have to return Ker. So
you have, with probability 1, a net profit of Ker(e(µ�r)

� 1) > 0.

b) Clearly the put-call parity does not hold, but we can also check as follows: sell one call (receiving c).
With that money buy one put, borrow S(0) � x and buy one stock. At the end of the contract either
S(T ) > K or not. If S(T ) > K: the call is exercised but the put is not. Thus you sell your stock, receiving
K = S(0)erT = (S(0)�xerT )+xerT , which is more than the money that you need to return to the bank.
So overall you have a net profit of xerT > 0. On the other hand, if the stock price is bellow K: then
the call is not exercised but you exercise your put. Then you sell the asset by K, and thus once again,
following a similar reasoning to the previous case, you have a net profit of xerT > 0. Either cases you
have an arbitrage possibility.
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CHAPTER 1. INTRODUCTION TO DERIVATIVES PRICING

18. Suppose that a certain stock is currently worth 61e. Consider an investor that buy one call with a strike price
equal to 55e, that costs 10e, buys another call with strike price equal to 65e, paying for such a call 5e and
sells two calls with a 60e strike price, receiving 7e for each of such call (assume that all the options have the
same underlying asset and same maturity).

a) Derive the profit from such a spread.

b) Present a combination of puts, instead of calls, such that you have exactly the same payoff as you have
with this combination of calls.

c) Derive the price of such spread, using only puts.

19. The price of a European call which expires in 6 months and has a strike price of 30 is 2. The underlying stock
price is 29, and a dividend of 0.50 is expected in two months and in five months. The annual interest rate is
10%. What is the price of a European put option that expires in 6 months and has a strike price of 30?

T � t = 6m = 1
2 ;X = 30;C = 2;St = 29; r = 0.1;D1 = 0.5; t1 � t = 2m = 1

6 ; t2 � t = 5m = 5
12 .

The put-call parity implies

C +Xe�r(T�t) +D1e
�r(t1�t) +D2e

�r(t2�t) = P + St

2 + 30e�0.1 1
2 + 0.5e�0.1 1

6 + 0.5e�0.1 5
12 = P + 29

and, hence, P = 2.51

20. Call options on a stock are available with strike prices of 15, 17.5, and 20 e, and expiration dates in 3 months.
Their prices are 4, 2, and 0.5 e, respectively. An investor has two long positions in calls, one with strike price
of 15 and the other 20 e, and has a short position in two call options with strike price of 17.5 e. Construct a
table showing how profit varies with stock price.

Let St denote the stock price at time t. Then the stock price at maturity is denoted by ST . The profit (without
taking into account the prices of the options) of this strategy depend on ST as follows:

– ST < 15: then neither of the options are exercised, so that the profit is equal to 0.0.

– 15 < ST < 17.5: the call whose strike price is 15 is the only to be exercised. Thus the profit is ST � 15.

– 17.5 < ST < 20: the calls with price prices 15 and 17.5 are exercised. Taken into account the short and
long positions, the profit is: ST � 15 + 2(17.5� ST ) = 20� ST .

– ST > 20: all the calls are exercised. Then the profit is ST � 15 + 2(17.5� ST ) + ST � 20 = 0.0

Note that the price (at time t = 0) of this strategy is 4+ 0.5� 2⇥ 2 = 0.5, which means that the investor loses
money (loses 0.5 e) if the price of the stock at the maturity is smaller than 15.5 or larger than 19.5.

21. The present price of a stock is 50. The price of a European call option with strike price 47.5 and maturity 180
days is 4.375. The cost of a risk-free 1 euro bond 180 days is 0.98.

a) Consider a European put option with price 1.025 (same strike price and maturity as the call option). Show
that this is inconsistent with put-call parity.

b) Describe how you can take advantage of this situation, creating an arbitrage possibility example.

a) Just plug-in the values in the put-call parity formula:

c+Ke�rT = p+ S(0)

From the price of the bond, and assuming continuously compounding, we can get the interest rate:

0.98⇥ er⇥0.5 = 1 , r = 0.040

(where r is the annual interest rate, as we considered 180 days to be equal to 0.5 (years)). Therefore:

4.375 + 47.5⇥ 0.98 = 50.925 < 1.025 + 50 = 51.025

which means that the call (put) is under(over) priced.

11
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b) As the call is under-priced, your arbitrage strategy involves buying a call and sell a put. Therefore you
proceed as follows:

– Buy a call, sell a put, short-sell one stock and sell it in the market. So you are left with:

�4.375 + 1.025 + 50 = 46.65

which you invest in a free-risk application, meaning that at the maturity that money worth 47.6019.
– At maturity, one of two things may happen:

– St < 47.5: then only the put is exercised, meaning that you are obliged to buy a stock, paying
47.5. You return the stock to the short-seller, and you get a net profit of 47.6019� 47.5 = 0.1019

– Otherwise: the call is exercised. Then you buy one stock in the market, paying only 47.5. As in
the other case, you return that stock to the short-seller, and you still get a net profit of 0.1019.

So with probability one, you get a net profit of 0.1019, which leads to an arbitrage possibility.

22. Assume that a European call on a stock with strike price K = 50 and exercise date in six months sells for 4.75,
and that a put, with same maturity, exercise date and on the same underlying stock, sells for 2.25. The price
of the underlying asset today is 52, the continuously compounded risk-free interest rate equals 0.06 and assume
that dividends in equal amounts of 0.73 are to be paid on 2 and 4 months.

a) Design an arbitrage portfolio.

b) Propose a put-call parity relation for the case of discrete dividends Di, i = 1, 2 . . . , n at times 0 < t1 <
t2 . . . < tn = T , where T is the maturity of the contracts.

a) In this case we will prove that this is an arbitrage portfolio because the call is overpriced when compared
to the put. Thus we propose the following arbitrage argument:

• sell such a call, buy the put and buy one of the underlying stocks. In order to be able to perform such
operations, we need to borrow 52� 4.75 + 2.22 = 49, 47, that we invest in the bank.

• At the end we need to return back 49.47e0.06⇤6/12 = 50.977 As we have a stock, we receive the
dividends, meaning that in the maturity we have 0.73⇥ (e0.06⇤4/12 + e0.06⇤2/12) = 1.482.

• At the maturity:
– either S(T ) < K (and in that case you exercise the put; you sell your stock, receiving 50. As we

have 1.482 due to the dividends and your need to return 50.977, you have a net profit of 0.505)
– or S(T ) � K (and in that case you have exactly the same net profit, as the owner of the call

exercises his option, and you are obliged to sell him the stock by 50).

So with probability one, you have an arbitrage portfolio.

b) The difference to the standard put-call parity is that we have the dividends, which are received by the
person who owns the stock (and thus is also the buyer of a put-option). Therefore the put-call parity at
time 0 in this case is:

c(0) +Ke�rT = p(0) + S(0)�
nX

i=1

Die
�rti

where c(0) (p(0)) is the price of the call (put) at time 0, and assuming a continuously compounded interest
rate. Also the interest rate, r, needs to be per same unit of time as T and ti (days, months, or so).

23. Consider an European put and a call, with the same underlying asset whose current price is S(0), same maturity
T , and same strike price K. Let p and c denote, respectively, the price of the put and the call. Furthermore,
assume that it is known that a dividend D will be received at time t < T . In this case, the put-call parity can
be written as follows:

c+Ke�rT +De�rt = p+ S(0)

Identify the arbitrage opportunity for the following values: K = 20, T is equal to 3 months, c = p = 3, r = 10%
(per year), S(0) = 19 and one dividend of 1 Euro will be received in one month.

12
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In view of the put-call parity, the call is overpriced. The arbitrage argument goes as follows:

– Sell one call, buy one put, borrow 19 euros from the bank

– At time 1, we receive 1 euro

– At maturity, the following happens:

– If S(T ) < K: the put is exercised. Then the payoff is K + e
0.1
12 ⇥2

� 19e
0.1
12 ⇥3 = 1.54

– If S(T ) � K: the call is exercised. Then the payoff is K + e
0.1
12 ⇥2

� 19e
0.1
12 ⇥3 = 1.54

which ends the argument (proving that with probability 1, we have a positive profit)

24. A digital (K,T ) call option gives its holder 1 unit of money at expiration time T if ST > K, and 0 otherwise. A
digital (K,T ) put option gives its holder 1 unit of money at expiration time T if ST < K, or 0 otherwise. Let
C1(t) and C2(t) be the costs of such call and put options on the same underlying asset and same maturity, at
time t. Derive a put-call parity relationship between C1(t) and C2(t).

If you buy one put and one call of such type, with probability 1, the payoff of such combination 1, which,
discounted back in time (from T to t), is equal at time t to e�r(T�t), where r is the constant rate (here assumed
continuously compounded). Therefore the price of such portfolio has to be equal to this payoff, meaning that:

C1(t) + C2(t) = e�r(T�t)

25. Suppose that c1, c2 and c3 are the prices of European call options with strike prices K1,K2 and K3 (with
K1 < K2 < K3), respectively, where K3 �K2 = K2 �K1, all with the same maturity T and same underlying
asset. Derive an inequality involving the prices of these contracts c1, c2 and c3.
Assume that you buy the European options with strike price K1 and K3, and you sell two options with strike
price K2. Then you initial investment is �2c2 + (c1 + c3). At maturity, you have the following payoff:

max(ST �K1, 0) + max(ST �K3, 0)� 2max(ST �K2, 0)

=

8
>>>><

>>>>:

0 ST < K1

ST �K1 K1  ST < K2

ST �K1 � 2(ST �K2) = 2K2 �K1 � ST K2  ST < K3

ST �K1 + ST �K3 � 2(ST �K2) = 2K2 �K1 �K3 ST � K3

If K3 � K2 = K2 � K1 then it follows that 2K2 � K1 � K3 = (K2 �K3) + (K2 �K1) = 0. Therefore as
max(ST �K1, 0) +max(ST �K3, 0)� 2max(ST �K2, 0) � 0 with probability one, it follows that the price of
this portfolio has to be positive, meaning that �2c2 + (c1 + c3) � 0.

26. Prove that with no dividends prior to expiration, the value of an American put option, P0, is restricted by:

P0  C0 � S(0) +K

where C0 is the value of the corresponding American call option, K is the strike price and S(0) is the price of
the underlying asset.
Consider portfolio A, which contains a call and K invested in the riskless asset, and portfolio B, which contains
a put option together with the stock. The payoff of these portfolios is the following:

Portfolio Value at date t Value at maturity
(if the put is exercised) S(T ) < K S(T ) � K

A: C0 +K value of the call at t+Kert Kert (S(T )�K) +Kert

B: P0 + S(0) K K S(T )
VA(t) > VB(t) VA(t) > VB(t) VA(t) > VB(t)

Thus the price of portfolio B needs to be larger than the price of portfolio A, by the no-dominance principle.

27. Consider a European call option and a put option on a stock each with a strike price of 22e, with maturity
6 months. The price of the call is 4e and the price of the put is 3e. The 6-month risk free rate of interest is
r = 10% (which you may assume continuously compounded). The current stock price is S0 = 20e. Identify the
arbitrage strategy.

13



Chapter 2

Binomial Model

1. Suppose that in each year the cost of a security either goes up by a factor of 2 or down by a factor of 1/2 (i.e.,
u = 2 and d = 0.5). Assume a continuously compounding euro interest rate of 4%.

a) If the initial price of the security is 100, determine the non-arbitrage cost of an European call option to
purchase the security at the end of two periods for a strike price of 150.

b) Assume that your option is American. Should you exercise early?

a) In this case, given that u = 2, d = 0.5 and r = 4% = 0.04, then q = 1+r�d
u�d = 0.36. In addition:

S0 S1 S2 gain
100 200 400 �(S2) = 250

50 100 �(S2) = 0
25 �(S2) = 0

Then the price of the option at the end of the first year if the security price goes up is equal to:

1

1.04
(0.36⇥ 250) = 86.54

and if it goes down then it is zero. Therefore the cost of this call is:

1

1.04
(0.36⇥ 86.54) = 29.96.

b) If this option is American, instead of European, then if at the end of the first year it goes up, then the
option should be exercised, as in that case the payoff is 50(= 200� 150), whereas the expected gain if the
option is postponed is 86.54 > 50. Therefore it should be postponed.

2. A stock price is currently 20 Euros, but it is known that in two months it can be either 25 Euros or 18 Euros.
Let S denote the value of the stock price in two months. Suppose that there is a derivative that pays off S2 and
that the interest rate is 12% per annum.

a) Determine the free-arbitrage pricing of this derivative.

b) Admit that you have 43 of these shares and that you sign this contract so that at maturity you have to pay
S2
T . Prove that in this case you are risk-free.

a) If we denote by ⇧(0;X) the derivative pricing, then one can prove that ⇧(0;X) = 0.343⇥252+0.657⇥182

1.02 =
418.9.

b) For such a portfolio, the value of it is unchanged (i.e., if the stock price goes up then we get 43⇥ 25� 252,
which is equal to the value of the portfolio if it goes down, 43⇥ 18� 182). Thus it is risk-free, under this
model.

14



CHAPTER 2. BINOMIAL MODEL

3. Consider a two-period binomial model, with one risky asset. Now assume that you have two kinds of derivatives:
the first one is a plain European call option; for the second one the payoff is a function of an average of the
prices, i.e., if Sav = 1

2 (S0 + S2), then the payoff is

(Sav �K)+

a) Without any calculations, explain which derivative should have a higher price.

b) Assuming that u > 1 and ud > 1, is it possible to establish which derivative has higher arbitrage-free price?

c) Derive the arbitrage-free price for both derivatives, assuming the following numerical values: u = 4, d =
0.5, r = 1, K = S0 = 4.

4. Suppose that T = 2, and that the initial price of the stock is S0 = 100. Assume that it the price may go up by
a factor u = 1.5 or by a factor d = 1.1, and that the strike price, K, is equal to 150. Assume a risk-free rate of
20%. Prove that the non-arbitrage price of this call is 7.16.

5. Consider a 2-year European put, with a strike price equal to 52 Euros on a stock whose current price is 50 Euros.
We assume that there are two time steps of one year, and in each time step the stock price either goes up by
20% or moves down by 20%. We assume also that the risk-free interest rate in 5% per annum.

a) Find the arbitrage free value of the option.

b) Determine the replicating portfolio.

c) Find the arbitrage free value of such an American put option and describe the optimal policy.

d) Now suppose that the interest rate is not fixed: in the first period it is 5%, while in the second period
depends on the state of the nature. If the stock goes up, the interest rate is 5%, whereas if it goes down,
the interest rate is 10%. Is the market arbitrage-free?

6. Consider the 2-period binomial model, with parameters u = 2, d = 1/2 and r = 1/4. Compute the standard
deviation of the logarithmic return of the stock, i.e., compute the volatility of X = logS1/S0.

7. In this problem we work with the standard 3-period binomial model, with the same data as in the previous
exercise; moreover, assume that S0 = 4. Now consider an American option not on the values of the underlying
stock {Sn} but on the following product:

Gn =

 
1

n+ 1

nX

i=0

Si � Sn

!

What is the optimal exercise strategy?

8. Consider a two-year European put-option, with a strike price of 52e on a stock whose current price is 50e. We
suppose that there are two time steps of one year, and in each time step the stock price either moves up, by
a proportional amount of 20%, or moves down, by a proportional amount of 20%. We also suppose that the
risk-free interest rate is 5% per annum (you may assume 1-year compounded).

a) Derive the fair price of this option.

b) Now assume that this option is an American one. Describe then what is the optimal decision. In particular,
when is early-exercise optimal? Derive also the value of this put.

a) In the case of the European put-option, the price of it is 4.2517.

b) If it is an American option, then you should exercise early if the price of the stock goes down in the first
year, and its price is 5.1360.

9. Consider a option such that the payoff at the maturity is given by max(0.5(S0 + ST ) � K, 0), where S0 (ST )
denotes the stock price at initial time (maturity) and K is the strike price. Assume a binomial model, with
S0 = 40, u = 1.3, d = 0.8, K = 45 and 2 years maturity. The interest rate changes with time, in the following
way: in the first year it is 3% and in the second year it is 4%.

a) Derive the price of this option.

b) Assume that the option can be exercised at the end of the first year or at maturity. When will it be optimal
to exercise?

15
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a) This is a typical pricing exercise except that the interest rate is not the same during the all period. Thus
one need to compute different martingale measures and update the price using different interest rates.
In fact, we have the following:

S0 = 40, Su = 52, Sd = 32, Suu = 67.6, Sud = Sdu = 41.6, Sdd = 25.6

and the payoff in the maturity is 0.5⇥ (40 + 67.6)� 45 = 8.8 if the stock prices goes up twice; otherwise
it is zero.
As the interest rate changes in the second year, also the martingale measure changes. So we denote by ↵i

the martingale probability relative of the ith period, with i = 1, 2. Then:

↵1 =
1 + r � d

u� d
=

1.03� 0.8

1.3� 0.8
= 0.46; ↵2 =

1.04� 0.8

1.3� 0.8
= 0.48

Thus the price of this option at t = 0 is just:

⇧(0) =
1

1.03

1

1.04
(0.46⇥ 0.48⇥ 8.8) = 1.81389.

b) If the price goes up in the first year, and if we exercise then the payoff would be 0.5⇥ (40+52)�45 = 1. If
we postpone the exercise, then we get, in average and already discount back, 1

1.040.48⇥8.8 = 4.06154 > 1.
Thus it is optimal to exercise only at maturity, and only if there are two consecutive ups.

10. Consider a two-year European put, with a strike price of 52 e on a stock whose current price is 50 e. We
suppose that there are two time steps of one year, and in each time step the stock price either moves up by a
proportional amount of 20% or moves down by a proportional amount of 20%. Assume that the risk-free interest
rate is 5%. Derive the value of the put. Would you exercise this option before the maturity, if allowed?

11. You are interested in stocks of a company HAL currently priced at 90 euros. The stock price is expected to
either go up by 25% or down by 20% each six months. The annual risk free interest rate is 5%. Your broker now
calls you with the following offer: After 6 months you can choose whether or not to buy a call option on HAL’s
stocks with 6 months maturity (i.e. expiry is 12 months from now). This option has a strike price equal to 85
euros, and costs 10 euros.

a) Derive the fair price of this compound option.

b) Now imagine that you do not have any choice after 6 months, you have to buy the option, paying the fixed
price of 10 euros. What is then the value of the contract?

12. A stock is currently sold at 90 Euros, and it is expected to go up by 15% or down by 20%. Consider a put-option,
with maturity 1.5 years, and strike price 90. Using a 3-step binomial model, for which the interest rate is 0.75%
(per semester), derive the optimal strategy (i.e., derive when the owner of the put should exercise it, optimally).

– Martingale probabilities: Q = (0.59; 0.41);

– The put option should be exercised before maturity if the stock price goes down in the first two periods
(when the stock price is 57.6).

– If the stock price goes up in the first two periods, hitting the value 119.025, it is indifferent between
stopping or continuing. In both cases the payoff is zero.

– The price of this option is (approximately) 9.61.

13. Consider a two-period binomial model for the stock price with both periods of length one year. Let the initial
stock price be S(0) = 100 and assume that the stock pays no dividends. Let the up and down factors be u =
1.25 and d = 0.75, respectively. Let the continuously compounded interest rate be r = 0.05 per annum. Roger
is interested in purchasing a chooser option with the provision that he can choose if the option is a put or a call
after one year. The strike for this option is 100 and the expiry date is two years. Using the above binomial tree,
find the price of the chooser option.

14. Suppose that the stock price is currently 20, and that in the next period its price will either increase/decrease
by 50%. Consider a put option, with an exercise price of 18, with maturity 12 months, currently sold at 0.86.
Assuming a 2 period-model, derive the corresponding interest rate.
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If r denotes the interest rate for a 6-months period, discretely compounded. Then it follows that the martingale
probability Q is given by Q = (0.5 + r, 0� 5� r) and that the expected payoff of such option is:

⇧(0) =
1

(1 + r)2
EQ[(K � S(2))+] =

1

(1 + r)2
�
3⇥ 2⇥ (0.5 + r)(0.5� r) + 13⇥ (0.5� r)2

�

=
1

(1 + r)2
�
4.75� 13r + 7r2

�

Equating this to the actual price of the option, gives:

1

(1 + r)2
�
4.75� 13r + 7r2

�
= 0.86 , 6, 14r2 � 14, 72r + 3, 89 = 0

whose roots are 0,30 and 2,09. In view of the condition for non-arbitrage, the only admissible solution is
r = 0, 30, i.e., the 6-months compound interest rate is 30%.

15. Consider a binomial model for the dynamics of an asset price, that is currently worth 100 Euros (S0), but that
may go up, by a factor of 25% or may go down, by a factor of 20%. Assume that we write an European call
option, with strike price 100, with maturity T = 3, and that the interest rate per period is equal to 0.01.

a) Derive the non-arbitrage price of such contract.

b) Assume the contract as before, but now use maturity T = 2. Also assume that the interest rate is not
constant; it changes along time, in the following way: in the first period is equal to 0.01, increasing then
to 0.015. What is the price of the contract in such situation? And what would happen if in the last period
the interest rate is 0.030?

a) Let X denote such derivative, and � the contract function. The associated martingale probability is
Q = ( 1.01�0.8

1.25�0.8 = 0.4667, 1� 0.4667) and thus

⇧(0;X) =

✓
1

1.01

◆3

EQ[�(S3)]

=
95.31225⇥ 0.46673 + 25⇥ 3⇥ 0.46672 ⇥ (1� 0.4667)

1.013
= 17.859.

b) In the first case, we can still price but now we have to use backwards definition. But beware that also the
martingales probability change along time. So for the second period, we use the following:

Q = (
1.015� 0.8

1.25� 0.8
= 0.478, 1� 0.478)

Therefore if at the first step the price goes up, the price of such option at that node is:

1

1.015
⇥ 56.25⇥ 0.478 = 26.49

The other node the price is zero. Then at time 0 we have the following price:

⇧(0;X) =
1

1.01
⇥ 26.49⇥ 0.4667 = 12.241

In case the interest rate increases in the second period, then the price of such contract also increases.

16. For a stock price S = {St}, assume a binomial model with S0 = 40, u = 1.3 and d = 0.8. There is a put-option
defined on this stock, with strike price K = 45, with maturity equal to T = 3 years. Assume that the annual
interest rate is 5%.

a) Determine the price of this put at the time t = 0.

b) Derive the price of this option if you assume that the holder of the option can exercise at any moment until
the maturity.

c) What would be the price of an equivalent call-option (i.e., a call option defined on the same underlying
asset, the same maturity and the same strike price as the put)? Assume, instead, that the call-price is 10e.
Design an arbitrage possibility.
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a) Using the martingale pricing formula, the price of this put at time 0 is equal to:

⇡p(0) =
1

1.053

3X

i=0

�
3
i

�
↵i(1� ↵)3�iF (uid3�iS0)

where F (uid3�iS0) = max(45� uid3�iS0, 0) and

↵ =
1.05� 0.8

1.3� 0.8
= 0.5

Thus F (d3S0) = 24.52, F (d2uS0) = 11.72 and zero, for other cases. Thus:

⇡p(0) =
1

1.053
(
�
3
2

�
⇥ 0.53 ⇥ 11.72 +

�
3
3

�
⇥ 0.53 ⇥ 24.52) = 6.44.

b) We need to compute, for each node, the payoff if we stop and the expected payoff if we continue, proceeding
backwards. If we go through the tree, the only cases where the payoff in case we stop and exercise is larger
than the expected payoff of continuing is either the stock market price decreases in the first period or it
decreases twice in a row, meaning in fact that the best strategy is to exercise before maturity if at the end
of the first period the price went down. Otherwise the option should only be exercised in the maturity.
For this strategy, the price of this contract is 7.46, higher than the corresponding European option.

c) Let c (p) denote the price of a call (put) option. Then according to the put-call parity

c = p+ S0 �Ke�rT
, c = 10 + 6.44 + 40� 45e�0.05⇥3 = 7.71

If, instead, the call-price is 10 e, then the call is overpriced, meaning that one wants to sell it. In that
case we have an arbitrage possibility, as follows: sell the call by 10 and buy a put, paying 6.44. Borrow
40 � 10 + 6.44 = 36.44 from the bank, and use 40 in order to buy a stock. At the maturity, you need to
return to the bank 36.44e0.05⇥3 = 42.34 Moreover, one of two things happen:

• ST < 45: the call is not exercised but the put is. Then you sell your stock, receiving 45. You return
42.34 eto the bank, and you have a net profit of 45� 42.34 > 0

• ST � 45: in that case only the call is exercised. Then you are obliged to sell your stock, paying 45 e,
and you have a net profit of 45� 42.34 > 0

Then with probability 1 you get an arbitrage situation.

17. Consider a binomial model with 3 periods, with u = 1.25, d = 0.8 and r = 1.07 (per period). Assuming an
European call option whose current underlying asset price is S0 = 400 and strike price equal to K = 375, derive
its price.

Martingale probabilities: Q = (0.6; 0.4)
Price= 1

1.073

⇥
0.63 ⇥ 406.25 + 3⇥ 0.62 ⇥ 0.4⇥ 125

⇤
= 115.71

18. Consider two dates, t1 < t2, and the following contract: at time t1 the holder receives, at no extra cost, a call
option with expiry date t2 and strike price St1 . Using a two-period binomial model, prove that the fair price of
this option at time zero is:

⇧(0;X) =

✓
1

r

◆t2�t1

S0u
2p2, with p2 =

r � d

u� d
,

assuming the necessary conditions for r, u and d.

19. Consider the following option: the payoff at maturity T is X1ST>K , where X is pre-speficied. Assume a binomial
model, such that:

d < er�t < u

where �t denotes the length of each time step. Find the value of this option at time 0.

20. Consider an American put option, with S(0) = 100,K = 100, u = 1.25, d = 0.80, r = 0.07 (per period), with 2
periods. Derive the price of this option and the optimal strategy.
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21. Consider a two-period binomial model, where each period is one year. The current price of the non dividend-
paying stock is 20e, with u = 1.2840, d = 0.8607. Assume that the 1-year risk-free interest rate is 5%. Calculate
the price of an American call option on the stock with a strike price of 22e.
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Chapter 3

Probability Theory

1. A (discrete-time) stochastic process {Y (t), t 2 N} on (⌦, {Ft}t2N, P ) is a Markov process if

P (Yn+1 2 A|�(Yj , j  n)) = P (Yn+1 2 A|Yn), 8A 2 ⌦.

Do you think that any Markov process is a martingale? If you believe so, give some informal explanation; if not,
provide a counterexample.

Consider the following process: {Sn, n 2 N0}, where Sn =
Pn

j=1 Xj , where {Xn, n 2 N} is a sequence of i.i.d.
Bernoulli variables. Then it follows that Sn+1 = Sn+Xn+1, and therefore this is trivially a Markov process, but
E[Sn|Fm] 6= Sm (where Fm denotes the sigma-algebra generated by the process until time m), unless E[X] = 0
(i.e, unless P (X = 0) = 1).

2. Assume that on the probability space (⌦,F , P ) there is a filtration {Ft, t 2 N}, which is an indexed family of
�-algebras on ⌦, such that Ft ✓ F , 8t. Now define the process Y = {Yt, t 2 N} by:

Yt = E[X|Ft]

Prove that {Yt, t � 0} is a (F , P )-martingale. What can you say about any martingale M defined on a compact
interval [0, T ], with T < 1?

The result follows trivially from the Tower property plus the fact that Yt is Ft-adapted, as it is a deterministic
function of a process that is trivially adapted to its natural filtration F . Moreover, Y is also P -integrable if
the expected value of X is also finite (which we assume to hold).
Finally, using this result, it follows that for any martingale M defined on a compact set [0, T ] (with T finite),
it follows that:

Mt = E[MT |Ft]

for any t  T .

3. Let X and Y be two independent, symmetric random variables in L
2. Prove that in this situation the following

holds:
E[(X + Y )2|X2 + Y 2] = X2 + Y 2.

In view of the symmetry of Y , it follows that Y
d
= �Y , and thus X + Y

d
= X � Y and (X + Y )2

d
= (X � Y )2.

Therefore

E[(X + Y )2|X2 + Y 2] = E[(X � Y )2|X2 + Y 2] ,

E[X2 + Y 2 + 2XY |X2 + Y 2] = E[X2 + Y 2
� 2XY |X2 + Y 2] ,

E[XY |X2 + Y 2] = 0

Thus it follows that E[(X + Y )2|X2 + Y 2] = E[X2 + Y 2 + 2XY |X2 + Y 2] = X2 + Y 2.

4. Let {✏j , j 2 N0} be a sequence of i.i.d. Bernoulli random variables, with P (✏i = 1) = 0.5. Define another
sequence of random variables as follows:

Z0 = 1;

Zn = 2✏nZn�1, n � 1
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a) Prove that the sequence {Zn, n � 0} is a martingale with respect to the usual filtration.
b) Define ⌧ = min{n : Zn = 0}. Prove that P (⌧ < 1) = 1 and that ⌧ is a stopping time to the sequence Z.
c) Derive E[Z⌧ ] and comment the result, in the light of martingale properties.

a) We note first that Zn = 2n with probability 0.5 or Zn = 0, and thus E[Zn] < 1. So Z = {Zn, n 2 N} is
an integrable process. Regarding the martingale property:

E[Zn|Zn�1] = E[2Zn�1✏n|Zn�1] = 2Zn�1E[✏n] = 0.

b) We have that ⌧ < 1 with probability 1 because ⌧ ⇠ Geo(0.5). ⌧ is also a stopping time to Z as

{⌧ = n} , {Zi = 2i ^ Zn = 0} 2 Fn,

where F is the natural �-algebra of Z.

c)
E[Z⌧ ] = E[0] = 0

but on the other side
E[Z⌧ |Z⌧�1] = 0 6= Z⌧�1]

meaning that the martingale property does not hold for stopping times. Recall the optional sampling
theorem...

5. Show that the class F of subsets A of R such that A or Ac is discrete (finite or countably infinite) is a �-algebra.
Define on F a set function P by P (A) = 0 if A is discrete and P (A) = 1 if Ac is discrete. Show that P so defined
is a probability measure.

In order to be a �-algebra the following conditions are required:

– The empty set 2 F , which holds because the empty set is, by definition, countable.

– If A 2 F , then it means that it is countable (and in that case Ac is not countable, and (Ac)c = A is
countable; thus in this case Ac

2 F), or then it means that Ac is countable (and thus it belongs to F).

– If Ai 2 F , then [iAi 2 F . To see why this holds, remark that if Ai is countable, for all i, then its
countable union is also countable and therefore [iAi 2 F . Now if at least one of the Ai is not countable,
then the union is not countable, and therefore its complement is countable, and thus it belongs to F .

So F so defined is indeed a �-algebra.
Finally one needs to prove that the function P is a probability, i.e., one needs to prove:

– P (⌦) = 1 as ⌦ is the complement of a discrete set (the empty set)

– If Ai \Aj =empty set, for i 6= j, then if they are all countable, it follows that P (Ai) = 0; moreover, [iAi

is also countable and thus
P ([iAi) = 0 =

X

i

P (Ai) =
X

i

0 = 0

Now assume that there K sets that are not countable. Then we know that its union is not countable, and
therefore P ([i2KAi) = 1. On the other side,

[iAi = [i2KAi [i/2K Ai

and [i2KAi is also countable. Thus:

P ([iAi) = P ([i2KAi) + P ([i/2KAi) = 0 + 1 = 1.

6. Consider a sequence X = {Xn, n 2 N}, and let �(X1, . . . , Xn) = Fn, such that X is a submartingale, i.e.,
E[Xn+1|Fn] � Xn. Moreover, let A0 = 0 and:

An =
nX

k=1

(E[Xk|Fk�1]�Xk�1) Mn =
nX

k=1

(Xk � E[Xk|Fk�1])

a) Prove that {Mn, n 2 N} is a martingale.
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b) Prove that An+1 � An, for all n. The r.v. An is Fn�1-measurable? And Fn-measurable?

a) First of all we note that for each n, Mn is Fn measurable, because it is a sum of n r.v. that, by construction,
are Fk measurable, for k  n, as Xk and E[Xk|Fk�1] are Fk measurable. Moreover,

E[|Mn|] 
nX

k=1

E|Xk � E[Xk|Fk�1]|  n max
k=1,...,n

E|Xk � E[Xk|Fk�1]|

= n max
k=1,...,n

E(Xk � E[Xk|Fk�1]) < 1

as {Xk} is a submartingale (thus Xk�E[Xk|Fk�1] > 0 with probability 1, and so E[Xk�E[Xk|Fk�1]] > 0).
Moreover, from the fact that {Xk} is a submartingale it also follows that E[Xk � E[Xk|Fk�1]] < 1.
So we just have to check the equality in terms of expected values:

E[Mn+1|Fn] = E[Mn|Fn] + E[Xn+1|Fn]� E[E(Xn+1|Fn)|Fn] = Mn + E[Xn+1|Fn]� E[Xn+1|Fn] = 0

as Mn is Fn-measurable and E[Xn+1|Fn] is also Fn-measurable.

b) We note that for k  n, E[Xk|Fk�1] and Xk�1 are Fk�1-measurable. Therefore if we sum up until k = n,
it follows that An is Fn�1-measurable. But as Fn�1 ⇢ Fn, then it is also Fn-measurable. Finally,

An+1 �An = E[Xn+1|Fn]�Xn > 0

as {Xi} is a sub-martingale.

7. Let (⌦,F , (Ft2T ), P ) be a filtered probability space. Fix s, s0 2 T , with s  s0, as well as B 2 Fs. Show that
the random time ⌧ defined via ⌧(w) = s, for w 2 B, and ⌧(w) = s0, for w 2 ⌦�B, is a stopping time.

The result follows trivially from the fact that:

{w 2 ⌦ : ⌧(w) = s} = {w 2 ⌦ : w 2 B} 2 Fs

{w 2 ⌦ : ⌧(w) = s0} = {w 2 ⌦ : w /2 B} 2 Fs

where the last equality comes form the fact that a �-algebra is closed for complements.

8. Let X = {Xn, n 2 N} be a martingale on (⌦,F , P ), and assume that G = {Gn, n 2 N} is a filtration contained
in F , and such that X is G-adapted. Then show that X is also a (G, P )-martingale.

As X is a martingale in the larger filtration F , then it is automatically integrable. We need also to assume
that X is G-adapted. So the only result that we need to prove concerns the conditional expectation result, i.e.,
we need to prove that E[Xn|Gn�1] = Xn�1. For that note the following:

E[Xn|Gn�1] = E[E[Xn|Fn�1]|Gn�1] = E[Xn�1|Gn�1] = Xn�1

where we have used one of the properties of conditional expectation, the fact that X is a a martingale on
(⌦,F , P ) and, finally, the fact that (we assume that) X is G-adapted.

9. Consider a Poisson process N = {N(t), t � 0}, with N(t) ⇠ Poisson(�t), with independent and stationary
increments. Define Ñ(t) = N(t)� �t, for t � 0. The filtration here is the one generated by N .

a) Show that Ñ as well as {Ñ2(t)� �t, t � 0} are both martingales.

b) Using the definition of quadratic variation, show that

[N,N ]t = [Ñ , Ñ ]t = N(t)

c) Use the previous two parts to show that {Ñ2
t � [Ñ , Ñ ]t, t � 0} is a martingale.
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a) Regarding Ñ :it is adapted to its own filtratation (as it is a deterministic transformation of the Poisson
process, itself adapted to its own filtration), and E[|Ñ(t)|] < 2�t < 1. Moreover, for s < t:

E[Ñ(t)|FN
s ] = E[N(t)� �t|FN

s ] = E[N(t)�N(s) +N(s)� �t|FN
s ] = E[N(t)�N(s)] +N(s)� �t

= E[N(t� s)] +N(s)� �t = �(t� s) +N(s)� �t = N(s)� �s = Ñ(s)

where in the last equalities we used properties of the Poisson process (namely the fact that it has inde-
pendent and stationary increments). Also that we conditioned in the filtration generated by N , has it
contains the same information as the one generated by Ñ .
Regarding {Ñ2(t) � �t, t � 0}, it is adapted to its own filtration (for the same reasons as the previous
process), and E[|Ñ2(t)� �t|] < 2(�+ �2)t < 1. Moreover, for s < t:

E[Ñ2(t)� �t|FN
s ] = E[(Ñ(s) +N(t)�N(s)� �(t� s))2|FN

s ]� �t

= Ñ2(s) + 2Ñ(s)E[N(t)�N(s)� �(t� s)]+

+ E[(N(t)�N(s)� �(t� s))2]� �t

= Ñ2(s) + �(t� s)� �t = Ñ2(s)� �s

where in the last equalities we used properties of the Poisson process (namely the fact that it has inde-
pendent and stationary increments).

b) Define �i,n
t = N

�
ti
n

�
� N

⇣
t(i�1)

n

⌘
, for i = 1, 2, . . . , n. Since N is a Poisson process, it follows that

�i,n
t = 1{⌧k2(t(i�1)/n,ti/n), for some k2N}, where (⌧k) denotes the sequence of arrival times for a Poisson

process. Note that as n ! 1, �i,n
t 2 {0, 1} (due to the properties of the Poisson process), and therefore

�i,n
t = (�i,n

t )2. Thus:

[N,N ]t = lim
n!1

nX

i=1

(�i,n
t )2 = lim

n!1

nX

i=1

�i,n
t = N(t)�N(0) = N(t).

10. Let G be a �-algebra defined on the sets {;, A,Ac,⌦} be a �-algebra. What is E[X|G]?

11. Show that if {Fi, i 2 J} is any collection of �-algebras on the same set ⌦, then their intersection,
T
i2J

Fi, is also

a �-algebra on ⌦.

Let F be a collection of subsets of ⌦. F is said to be a �-algebra of subsets of ⌦ if:

(i) There exists at least one A ✓ ⌦ so that A 2 ⌦.

(ii) If A 2 F , then Ac
2 F .

(iii) If {An}n2N 2 F , then
S

n2N
An 2 F .

Now suppose that {Fi}i2J are �-algebras of ⌦ and define F =
T

i2J Fi. We shall show that F is also a �-algebra
of ⌦ by proving the previous three properties:

(i) For each i 2 J , there exists a set Ai ✓ ⌦ so that Ai 2 Fi. Then,
T

i2J Ai ✓ ⌦ and
T

i2J Ai 2 F .

(ii) If A 2 F , then A 2 Fi for any i 2 J . If follows from the second property that Ac
2 Fi for i 2 J and

consequently Ac
2 F .

(iii) If {An}n2N 2 F , then {An}n2N 2 Fi for any i 2 J . By the �-property,
S

n2N
An 2 Fi and finally

S
n2N

An 2 F .

12. Let ⌃ be a �-algebra of subsets of X and Y ⇢ X be a non-empty subset of X. If we denote

⌃|Y = {A \ Y |A 2 ⌃}

then prove that ⌃|Y is a �-algebra of subsets of Y .
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– As ⌃ is a �-algebra, it follows that with ; = ; \ Y 2 ⌃|Y .

– If B 2 ⌃|Y , then it exists A 2 ⌃ such that B = A\Y . Since X�A 2 ⌃, we get that Y �B = (X�A)\Y 2

⌃|Y .

– If B1, B2, . . . 2 ⌃|Y , then for each k, Bk = Ak \ Y , for some Ak 2 ⌃. Since [kAk 2 ⌃, we find that
[kBk = ([kAk) \ Y 2 ⌃|Y .

13. Prove that the conditional expectation is linear, i.e., prove that for X and Y such that they are F-adapted,

E[↵X + �Y |F ] = ↵E[X|F ] + �E[Y |F ].

By definition of conditional expectation, it follows that for all A 2 F , and using the properties of the expectation
(a linear operator):

E [(↵X + �Y )1A] = E [↵X1A + �Y 1A] = ↵E [X1A] + �E [Y 1A]

from which the result follows.

14. Let X be a non-empty set and A a collection of subsets of X. We call A an algebra of subsets of X it is is
non-empty, closed under complements and such that if A,B 2 A, then A [ B 2 A. Prove that an algebra has
the following properties:

a) Contains at least the sets ; and X;

b) It is closed under finite unions, under finite intersections and under set differences (like A�B).

a) Take any set A 2 A (there exists at least one since A is an algebra). Since A is closed under complements,
Ac

2 A. Moreover, X = A [Ac
2 A and consequently ; = Xc

2 A.

b) – A is closed under finite unions:
We prove this property by induction. If A1, A2 2 A, then A1 [ A2 2 A. Now suppose that for
any n 2 N, if A1, ..., An 2 A, then

Sn
k=1 Ak 2 A. It follows that if A1, ..., An, An+1 2 A, thenSn+1

k=1 Ak = (
Sn

k=1 Ak) [An+1 2 A.
– A is closed under finite intersections:

We prove that the intersection of two sets is in A. If A1, A2 2 A, then Ac
1, A

c
2 2 A. Thus, Ac

1[Ac
2 2 A

and A1 \A2 = (Ac
1 [Ac

2)
c
2 A. The rest of the proof is by induction and similar to the previous one.

– A is closed under set differences:
If A1, A2 2 A, then A1 \A2 = A1 \Ac

2 2 A.

15. Let {✏j , j = 1, 2, · · · } be a sequence of i.i.d. random variables with common distribution

P (✏j = 1) = p; P (✏j = �1) = q = 1� p

and Fn = �(✏j , 0  j  n), n � 0 their natural filtration. Denote Sn =
Pn

j=1 ✏j , n � 0. Prove that {Mn =
⇣

q
p

⌘Sn

, n � 0} is a Fn-martingale.

By construction, Sn is Fn measurable and therefore so it is Mn, for all n. Also E[|Mn|] = E[Mn] = E
⇣

q
p

⌘Sn
�
<

1 as Sn  n with probability 1. Then we need to check the martingale equality:

E[Mn+1|Fn] = E

Mn

✓
q

p

◆✏n+1 ���Fn

�
= MnE

✓
q

p

◆✏n+1 ���Fn

�
= MnE

✓
q

p

◆✏n+1
�
= Mn

✓
p
q

p
+ q

p

q

◆
= Mn

16. Let X be an integrable random variable, and H = {Ht, t � 0} an increasing family of �-algebras. Let Xt =
E[X|Ht]. Prove that {Xt, t � 0} is a martingale with respect to H.
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We need to prove the following:

– Xt is Ht measurable: true, by definition of conditional expectation.

– E[|Xt|] < 1: Using the definition of Xt, then the Jensen inequality, followed by the Tower property and,
finally, using the fact that X is an integrable random variable, it follows that:

E[|Xt|] = E[|E[X||Ht]|]  E[E[|X||Ht]] = E[|X|] < 1

– Assume that s < t and we check the conditional expectation property:

E[Xt|Hs] = E[E[X|Ht]|Hs ]] = E[X|Hs] = Xs

where in the above derivation we have used the definition of Xt, the Tower property and again the definition
of Xs.

17. Let M and X be two discrete-time processes, such that M is a martingale, and define the martingale transform
of M by X as follows:

(X.M)n =
nX

k=1

Xk(Mk �Mk�1)

Prove that if X is a bounded, predictable process, then X.M is a martingale.

We need to check the three properties that come in the definition of martingale, which are the following:

– (X.M)n is Fn measurable: true, as for k  n, Xk and Mk are Fk measurable, Mk�1 is Fk�1 measurable,
and therefore their sum and product is Fk measurable, which means that it is Fn measurable, as Fk ✓

Fn, 8k  n.

– E[|(X.M)n|] < 1: this follows as

E[|(X.M)n|]  E
"

nX

k=1

|Xk| |Mk �Mk�1|

#
 E

"
nX

k=1

|Xk|(|Mk|+ |Mk�1|)

#

=
nX

k=1

E [|Xk|](E[|Mk|] + E[|Mk�1|])]  max
k

E[|Xk|]
nX

k=1

(E[|Mk|] + E[|Mk�1|])]

= K
nX

k=1

(E[|Mk|] + E[|Mk�1|])] < 1

where K is such that Xk  K with probability one (which exists and it is finite, as X is a bounded
process), and E[|Mk|] < 1, 8k, as M is a martingale.

– As the process is time-discrete, we need only to prove that E[(X.M)n+1|Fn] = (X.M)n, 8n 2 N0. This
follows as:

E[(X.M)n+1|Fn] = E [(X.M)n +Xn+1 (Mn+1 �Mn) |Fn]] = (X.M)n + E [Xn+1 (Mn+1 �Mn) |Fn]]

= (X.M)n +Xn+1E [(Mn+1 �Mn) |Fn]] because X is predictable
= (X.M)n +Xn+1 ⇥ 0 because M is a martingale
= (X.M)n

18. Let (⌦,F , {Fn}, P ) be a filtered probability space. Let {Mn, n = 0, 1, 2, ...} be a square integrable martingale.

a) Show that E[M2
n+1|Fn] � M2

n, for all n.

b) Show that Cov(Mn+1 �Mn,Mn) = 0, for all n.

c) Let

hMin =
n�1X

i=0

E[(Mi+1 �Mi)
2
|Fi], 8n

with hMi0 = 0. Argue that hMin is Fn-measurable, for all n, and that {M2
n � hMin, n} is a martingale

(without proving the integrability condition).
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a) As {Mn, n = 0, 1 . . .} is a martingale, we know that E[Mn+1|Fn] = Mn. Then it follows, using the Jensen
inequality:

E[M2
n+1|Fn] � (E[Mn+1|Fn])

2 = M2
n.

b) In order to prove such result, we start by computing E[Mn+1Mn], which we will do using the Tower
property (in order to use the martingale condition)

E[Mn+1Mn] = E [E[Mn+1Mn|Fn]] = E [MnE[Mn+1|Fn]] as Mn is Fn measurable
= E [MnMn] by the martingale property
= E[M2

n]

Therefore, as also E[Mn] = E[Mn+1], it follows that:

Cov(Mn+1 �Mn,Mn) = Cov(Mn+1,Mn)�Var[Mn]

= E[Mn+1Mn]� E[Mn+1]E[Mn]� E[M2
n] + E2[Mn]

= E[M2
n]� E2[Mn]� E[M2

n] + E2[Mn] = 0.

c) To prove that it is Fn-measurable, we just need to use the properties of conditional expectation, which
imply that E[(Mi+1 �Mi)2|Fi] is Fi measurable, and therefore it is also Fn measurable, implying that its
sum is also Fn measurable.
So now we prove the martingale condition, i.e., we prove that E[M2

n+1 � hMin+1|Fn] = M2
n � hMin.

E[M2
n+1 � hMin+1|Fn] = E

"
M2

n+1 �

nX

i=0

E
⇥
(Mi+1 �Mi)

2
|Fi

⇤ ���Fn

#

= E
"
M2

n+1 �

n�1X

i=0

�
E
⇥
(Mi+1 �Mi)

2
|Fi

⇤�
� E

⇥
(Mn+1 �Mn)

2
|Fn

⇤ ���Fn

#

= E[M2
n+1|Fn]� hMin � E[(Mn+1 �Mn)

2
|Fn]

= E[M2
n+1|Fn]� hMin � E[M2

n+1|Fn]� E[M2
n|Fn] + 2E[MnMn+1|Fn]

= �hMin �M2
n + 2MnE[Mn+1|Fn]

= �hMin �M2
n + 2MnMn

= M2
n � hMin

which ends the proof.

19. Prove the following properties of conditional expectation:

a) Prove that if F = {;,⌦} then E[X|F ] = E[X], with probability one, where X is a random variable defined
on ⌦.

b) Let X be an integrable random variable, and F1 ⇢ F2 be two �-algebras. Prove that

E[X|F2] = E[X|F1]

if and only if E[X|F2] is F1-measurable.

a) Let Z = E[X|F ]. In case F is the trivial �-algebra, then in order to have a r.v. measurable with respect
to such �-algebra, it means that it has to be a deterministic one. Therefore it follows that:

E[Z1⌦] = E[Z1;]

So we compute E[Z1⌦], which is equal to E[Z1⌦] =
R
⌦ ZdP =

R
⌦ XdP = E[X] which proves that

E[X|F ] = E[X].
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b) Suppose that E[X|F2] is also F1 measurable. Applying the Tower property, it follows that:

E[X|F2] = E [E[X|F2]|F1] = E[X|F1]

which proves that if E[X|F2] is F1 measurable, then the equality holds.
On the other side, if the equality holds, then it follows that E[X|F2] = E[X|F1] is F1 measurable, by
definition of conditional expectation.

20. Let {Yn, n 2 N} be a sequence of positive independent r.v. with E[Yj ] = 1, for all j. Set

X0 = 1, Xn =
nY

j=1

Yj

Show that {Xn, n 2 N} is a martingale relative to its natural filtration.

In order to prove that it is a martingale, we need to check the following:

– E[|Xn]] < 1, which is equivalent to show that E[Xn] < 1. Then:

E[Xn] = E
"

nY

i=1

Yn

#
=

nY

i=1

E[Yn] = 1 < 1, 8n

(because the r.v. are independent)

– Xn is Fn measurable, as by construction it is always adapted to its natural filtration

– E[Xn+1|Fn] = E[XnYn+1|Fn] = XnE[Yn+1|Fn] = XnE[Yn+1] = Xn where in the previous equality we
have used the fact that Xn is Fn measurable and that Yn+1 is independent of the other random variables.

So the martingale property holds.

21. Let {Xn, n 2 N} be a sequence of independent Bernoulli random variables, such that P (Xi = 0) = 1 � p and
P (Xi = 1) = p. Let Sn =

Pn
i=1 Xi and, finally, define Z = {Zn, n 2 N}, such that:

Zn =
⇣

1�p
p

⌘2Sn�n

Prove that Z is a martingale.

In order to prove that it is a martingale, we prove the following:

– Zn depends on Sn, and thus it is obviously adapted to the filtration generated by {Si, i 2 N}, which in its
turn is adapted to the filtration generated by {Si, i 2 N}

– As Sn ⇠ Bin(n, p), it follows that Sn  n and therefore

E[Zn] 
⇣

1�p
p

⌘n
< 1, 8n

– As it is a discrete-time process, we just need to check that E[Zn+1|Zn] = Zn:

E[Zn+1|Zn] = E

Zn

⇣
1�p
p

⌘2Xn+1�1 ���Zn

�
= ZnE

⇣
1�p
p

⌘2Xn+1�1
�

= Zn


(1� p)

⇣
1�p
p

⌘�1
+ p

⇣
1�p
p

⌘1
�
= Zn

22. Let X and Y be square integrable random variables and suppose that E[X|Y ] = Y and E[Y |X] = X a.s. Show
that X = Y a.s.

Hint: Compute Var(X � Y ) and using that value, argue the result.
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We start by noting that E[X] = E[E[X|Y ]] = E[Y ], which implies that E[X � Y ]2 = 0 and we can simply write
Var(X � Y ) = E[(X � Y )2]. Now if we condition E[(X � Y )2] on Y , we get

E[(X � Y )2] = E[E[X2
� 2XY + Y 2

|Y ]] = E[E[X2
|Y ]]� 2E[Y E[X|Y ]] + E[Y 2]

= E[X2]� 2E[Y 2] + E[Y 2] = E[X2]� E[Y 2].

Likewise, conditioning E[(X�Y )2] on X, we get that E[(X�Y )2] = E[Y 2]�E[X2]. Thus, since E[(X�Y )2] =
�E[(X � Y )2], we must have E[(X � Y )2] = 0. We conclude that Var(X � Y ) = 0 and consequently X = Y
a.s.

23. Let {Xn, n} be a sequence of independent Bernoulli r.v. of parameter E[Xn] = (1 + e)�1. We define M0 = 1
and for n:

Mn = e�n+2
Pn

i=1 Xi

Prove that {Mn, n} is a martingale.

Let {Fn = �(Xn) : n 2 N} be the natural filtration of Xn. In order to prove that {Mn : n 2 N} is a martingale
adapted to {Fn : n 2 N}, we need to prove three properties:

– Mn 2 Fn: for i  n, Xi 2 Fi ✓ Fn, hence
Pn

i=1 Xi 2 Fn and consequently Mn 2 Fn.

– Mn is integrable: 0  E[|Mn|] = E[Mn] = e�nE[e2
Pn

i=1 Xi ]  e�nE[e2n] = en < 1.

– E[Mn+1|Fn] = Mn :

E[Mn+1|Fn] = E[e�(n+1)+2
Pn+1

i=1 Xi |Fn] = e�1E[e�n+2
Pn

i=1 Xie2Xn+1 |Fn] = e�1MnE[e2Xn+1 |Fn]

= e�1MnE[e2Xn+1 ] = e�1Mn

✓
1

1 + e
e2⇥1 +

✓
1�

1

1 + e

◆
e2⇥0

◆
= e�1Mne = Mn.

Obs: In fact, since
Pn

i Xi ⇠ Bin(n, 1
1+e ), taking advantage of the moment generating function of the binomial

distribution, E[e2
Pn

i Xi ] =
⇣
1� 1

1+e + 1
1+ee

2
⌘n

= en and thus E[Mn] = 1.
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Chapter 4

Stochastic Calculus

In this chapter, {W (t), t � 0} denotes a Brownian motion.

1. Our definition of stochastic integral w.r.t. to Brownian motion is based on:

Z t

0
g(u)dW (u) :=

n�1X

k=0

g(tk) [W (tk+1)�W (tk)]

where {0 = t0, t1, . . . , tn = t} is one partition of the interval [0, t].

Suppose now that we define a new type of integral, based on the following:

I t

0
g(u)dW (u) :=

n�1X

k=0

g(tk+1) [W (tk+1)�W (tk)]

Let g(t) = W (tk), for t 2 [tk; tk+1[.

a) Show that E
hR t

0 g(u)dW (u)
i
= 0 but E

hH t
0 g(u)dW (u)

i
= t.

b) Is this new integral still a martingale?

a)

E
Z t

0
g(u)dW (u)

�
= E

"
n�1X

k=0

g(tk) [W (tk+1)�W (tk)]

#
=

n�1X

k=0

E [W (tk) [W (tk+1)�W (tk)]]

Now (W (tk+1)�W (tk)) is independent of W (tk), and therefore:

n�1X

k=0

E [W (tk) [W (tk+1)�W (tk)]] =
n�1X

k=0

E [W (tk)]E [W (tk+1)�W (tk)] = 0.

Similarly,

E
I t

0
g(u)dW (u)

�
= E

"
n�1X

k=0

g(tk+1) [W (tk+1)�W (tk)]

#
=

n�1X

k=0

E [W (tk+1) [W (tk+1)�W (tk)]]

=
n�1X

k=0

E [[W (tk+1)�W (tk) +W (tk)] [W (tk+1)�W (tk)]]

=
n�1X

k=0

Var [W (tk+1)�W (tk)] =
n�1X

k=0

(tk+1 � tk) = tn � t0 = t.
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b) In order to check if this is still a martingale (recall that
R t
0 g(u)dW (u) is a martingale, with g given by

g(t) = W (tk), for t 2 [tk; tk+1[), we check first the following conditional condition holds:

E
I t

0
g(u)dW (u)

���Fs

�
=

I s

0
g(u)dW (u)

Now consider a partition of the time interval [0, t] such that tm = s, for s < t, and denote by Fs the
sigma-algebra of the process generated until time s. Then

E
I t

0
g(u)dW (u)

���Fs

�
= E

"
n�1X

k=0

W (tk+1)[W (tk+1)�W (tk)]
���Fs

#

= E
"
m�1X

k=0

W (tk+1) [W (tk+1)�W (tk)]
���Fs

#

+ E
"

n�1X

k=m

g(tk+1) [W (tk+1)�W (tk)]
���Fs

#

=

I s

0
g(u)dW (u) + E

I t

s
g(u)dW (u)

�
=

I s

0
g(u)dW (u) + (t� s)

and therefore this is not a martingale!
Note that this means, in particular, that contrary to real integrals (where you can define left or right
ladder functions), in the stochastic integral it is crucial the definition of such functions.

2. Let X be a diffusion, and a : R+
0 ! R+ be a deterministic function. Derive the dynamics of aX.

Use Ito’s rule, with:

f(t, x) = a(t)x; ft(x, t) = a0(t)x; fx(t, x) = a(t); fxx(t, x) = 0.

Then, assuming that dX(t) = µ(t)X(t)dt+ �(t)X(t)dW (t), it follows that

df(t, x) = (a0(t)x+ a(t)µ(t)X(t))dt+ a(t)�(t)X(t)dW (t) = a0(t)X(t)dt+ a(t)dX(t).

Therefore if a is a deterministic function, then the usual derivation rules hold.

3. Regarding the Brownian motion:

a) Prove that for 0 < t < u, Cov(W (t)� t
uW (u),W (u)) = 0.

b) Is W (t)� t
uW (u) independent of W (u)? Justify your answer.

c) Prove that
E[W (t)|W (u)] =

t

u
W (u).

Note: this last assertion means that the conditional mean of the Brownian motion is obtained by linearly
interpolating between the points we are given.

4. Consider the following stochastic differential equation:

dX(t) = �
X(t)

1� t
dt+ dW (t), t 2 [0, 1[

with X(0) = 0.

a) Show that Cov(X(s), X(t)) = s(1� t), for 0  s  t < 1.

b) Prove that the solution of such equation is:

X(t) = (1� t)

Z t

0

1

1� u
dW (u)

for t 2 [0, 1[. What is a reasonable value for X(1)?

c) Derive E[X(t)]. Is X a martingale?
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5. Let W = {W (t), t � 0} be a Brownian motion and S = {S(t), t � 0}, where S(t) = eµt+�W (t), with S(0) = 1.

a) Derive an expression for P (S(t)  x).

b) Determine an expression for the conditional expectation E[S(t)|Fs], where s < t and {Fs, s � 0} is the
filtration associated with the process S.

c) Find conditions on µ and � under which the process {S(t), t � 0} is a martingale.
Note: You may need to use the following fact: the moment generating function of a random variable Y
with normal distribution, with parameters µ and � is given by:

E[esY ] = esµ+
1
2�

2s2 , s 2 R.

d) Let ⌧a = inf{t : S(t) = a}, defined for a > 0. Derive the probability distribution of ⌧a.

a)

P (S(t)  x) = P (eµt+�W (t)
 x) = P

✓
W (t) 

lnx� µt

�

◆
= �

✓
lnx� µt

�
p
t

◆

for x � 0.

b) Using the fact that the Brownian motion has stationary and independent increments, we have the following:

E[S(t)|Fs] = E[eµt+�W (t)
|Fs] = eµte�W (s)E[e�(W (t)�W (s))

|Fs] = eµte�W (s)E[e�(W (t)�W (s))]

= eµte�W (s)E[e�W (t�s)] = eµte�W (s)e
1
2 (t�s)�2

= S(s)e(µ+
1
2�

2)(t�s)

for t < s.

c) As for each t, S(t) is a deterministic function of the Brownian motion, then of course that it is F-adapted.
Moreover, E[|S(t)|] = E[eµt+�W (t)] < 1, for all t, as long as µ < 1 and � < 1. So we just need to prove
the condition on the equality of the conditional expected value:

E[S(t)|Fs] = eµte�W (s)e
1
2 (t�s)�2

= S(s) = eµs+�W (s)

from where we get the following condition:

µ(t� s) +
1

2
(t� s)�2 = 0 () µ = �

�2

2
.

d) In order to solve this exercise we just have to use the following relationship between first passage times of
the process W and the process S:

⌧a = inf{t : S(t) = a} = inf{t : W (t) = ln a�µt
� } = ⌧Wln a�µt

�

Notice that this problem is in fact harder than the usual hitting time problem, as in here we have a moving
boundary. But for the time being, we forget this situation and act as if this is a constant boundary. So

P (⌧a < t) = P
⇣
⌧Wln a�µt

�
< t

⌘
= 2P (W (t) > ln a�µt

� ).

6. Let x0 be a real number, a, b and c be sufficiently smooth deterministic functions. Define X = {X(t), t � 0} as
follows:

X(t) = a(t)

✓
x0 +

Z t

0
b(s)ds+

Z t

0
c(s)dW (s)

◆

a) Prove that X(t) is normally distributed for all t.

b) Show that if a(t) > 0 for t � 0, then X has the following dynamics:

dX(t) =

✓
a(t)b(t) +

a0(t)

a(t)
X(t)

◆
dt+ a(t)c(t)dW (t)
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c) Now consider the following SDE:

dX(t) = �
X(t)

1� t
dt+ dW (t)

with X(0) = 0 and defined for t 6= 1. Prove that the solution to this SDE is the following:

X(t) = (1� t)

Z t

0

1

1� u
dW (u)

Is X a martingale?
d) Derive E[X(t)] and prove that Cov(X(s), X(t)) = s(1� t) for 0  s  t < 1.

7. For a stochastic process {X(t), t � 0} and for a a partition, we define the quadratic variation process as follows:

[X,X]t = lim
�t!0

X
(X(ti+1 �X(ti))

2

where ti = i�t Prove that if X is a Brownian motion, then

[X,X]t = t.

8. Assume that X is a continuous martingale, and let ↵ be a constant. Prove that the process {Y (t), t � 0} defined
by:

Y (t) = e↵X(t)� 1
2↵[X,X]t

is a martingale.
Hint: Compute dY (t).

9. Use Ito’s formula to compute E[W 4(t)].

10. Let {W (t), t 2 R+
} denote the standard Brownian motion. Classify the following processes as martingales or

not:

a) X(t) = 2W (t)� 2

b) Y (t) = W 2(t)� t

c) Z(t) = t2W (t)� 2
R t
0 sW (s)ds

11. Let X and Y be two random variables of the form:

X = x0 +

Z T

0
g(s)dW (s)

Y = y0 +

Z T

0
h(s)dW (s)

and g and h having disjoint support, i.e.:

g(t)h(t) = 0, P � a.s., 0  t  T.

Using Itô’s formula, prove then that

XY = x0y0 +

Z T

0
[X(s)h(s) + Y (s)g(s)] dW (s).

12. Let B = {B(t) = (1 + 1
2W (t))2} and Z = {Z(t) = e

1
2 t sin (W (t))}. Prove that:

a) Z is a martingale with respect to the filtration of the Brownian motion.
b) B satisfies:

dB(t) =
1

4
dt+

p
B(t)dW (t)

13. Let X = {X(t) = W 3(t) � 3tW (t), t � 0}. Prove, using the definition of martingale, that X is a martingale
(note that if X is a r.v. with symmetric density distribution, then E[X3] = 0).

We note, first, that X(t) 2 Ft, trivially, as this is a deterministic function of W (t); then we have to assume
that E[|X(t)|] < 1. So let us prove that the equality of the condition expectation holds:

E[X(t)|Fs] = E[W 3(t)� 3tW (t)|Fs] = E[W 3(t)|Fs]� E[3tW (t)|Fs] = E[(W (t)�W (s) +W (s))3|Fs]� 3tW (s)

= E[(W (t)�W (s))3 + 3(W (t)�W (s))2W (s) + 3(W (t)�W (s))W 2(s)|Fs] +W 3(s)� 3tW (s)

= E[(W (t)�W (s))3] + 3W (s)E[(W (t)�W (s))2] + 3W 2(s)E[(W (t)�W (s))]� 3tW (s) +W 3(s)

= 0 + 3W (s)(t� s)� 3tW (s) +W 3(s) = W 3(s)� 3sW (s) = X(s)
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14. Let f : R+
⇥ R ! R be a twice differentiable function, such that the Ito’s formula may be applied.

a) Show that f(t,W (t)) is a martingale if and only if

�

�t
f(t, x) +

1

2

�2

�x2
f(t, x) = 0, 8t, x

b) As an application, show that {W 2(t) � t, t � 0} is a martingale. Show also this result from the definition
of a martingale (the equality of the conditional expectation).

c) For a, b 2 R, define the process X by {X(t) = eaW (t)�bt, t � 0}. Determine the relationship between a and
b in order for X to be a martingale.

a) Assume the necessary conditions, in order to apply Ito’s lemma. Then if we apply it to the function f , we
derive the following SDE:

df(t,W (t)) =
�

�t
f(t,W (t))dt+

�

�x
f(t,W (t))dW (t) +

1

2

�2

�x2
f(t,W (t))(dW (t))2

i.e.,

df(t,W (t)) =

✓
�

�t
f(t,W (t)) +

1

2

�2

�x2
f(t,W (t))

◆
dt+

�

�x
f(t,W (t))dW (t)

as (dW (t))2 = dt. Thus f is a diffusion process with drift �
�tf(t,W (t)) + 1

2
�2

�x2 f(t,W (t)) and therefore it
is a martingale iff its drift is zero, giving the result (as it has to hold for all W (t) = x 2 R).

b) In this case the function f is the following: f(t, x) = x2
� t, which is, at least, twice differentiable for all

variables. Besides:

�

�t
f(t, x) +

1

2

�2

�x2
f(t, x) = �1 + 1 = 0.

If we use the definition of martingale, then it follows that X is F adapted (trivial, as it is a deterministic
function of W (t), for all t) and

E[|X(t)|]  E[W 2(t)] + t < 2t < 1.

So, regarding the conditional expectation:

E[W 2(t)� t|Fs] = E[(W (t)�W (s) +W (s))2|Fs]� t

= E[(W (t)�W (s))2 +W 2(s) + 2(W (t)�W (s))W (s)|Fs]� t

= (t� s) +W 2(s)� t = W 2(s)� s = X(s).

c) Set f(t, x) = eax�bt, so that ft = �bf(t, x), fx = af(t, x) and fxx = a2f(t, x). Then X is a martingale if
and only if:

�bf(t, x) +
1

2
a2f(t, x) = 0 , �b+

1

2
a2 = 0.

15. We define the pathwise covariation of X and Y over [0, t] to be:

[X,Y ]t = lim
n!1

nX

i=1

(X(t i
n )�X(t i�1

n ))(Y (t i
n )� Y (t i�1

n ))

provided the previous limit exists. If X = Y then we call it the quadratic variation of X over [0, t].

a) Prove that for the Brownian motion, the following holds:

[W,W ]t = t, 8t

Probably you will need to use the strong law of large numbers, that states that X̄n
a.s.
��! E[X] (i.e., the

sample average converges almost surely to the expected value)
b) Let W and W̃ be two independent Brownian motions. Show that in this case:

[W̃ ,W ]t = 0, 8t
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a) From the properties of the Brownian motion, it follows that W (t i
n )�W (t i�1

n ) ⇠ N(0, t
n ). Thus

[W,W ]t = lim
n!1

nX

i=1

 r
t

t
Zi

! r
t

t
Zi

!
= lim

n!1

nX

i=1

 r
t

n
Zi

!2

= lim
n!1

t

n

nX

i=1

(Zi)
2 = t

with Zi ⇠ Z ⇠ N(0, 1), where the last equality follows by the strong law of large numbers, as

lim
n!1

1

n

nX

i=1

(Zi)
2 = E[Z2] = 1

(the equalities have to be read in the almost sure sense).

b) The reasoning is similar, except that in this case we end up with

[W, W̃ ]t = lim
n!1

nX

i=1

 r
t

t
Zi

! r
t

t
Yi

!
= lim

n!1

nX

i=1

 r
t

n
ZiYi

!
= lim

n!1

t

n

nX

i=1

(ZiYi) = 0

with Zi, Yi ⇠ Z ⇠ N(0, 1), independent, and also from the fact that

lim
n!1

1

n

nX

i=1

(ZiYi)
2 = E2[Z] = 0

by the independence assumption.

16. Fix T and consider the following SDE:

dX(t) =
y �X(t)

T � t
dt+ �dW (t), t 2 [0, T )

with X(0) = x 2 R.

a) Is X = {X(t), t � 0} a martingale?

b) Define a new process R = {R(t), t � 0} such that R(t) = X(t)�y
T�t for t 2 [0, T ). Show that

dR(t) =
�

T � t
dW (t)

c) Prove that

X(t) = y + (T � t)R(t) = (1� t
T )x+

t

T
y + �(T � t)

Z t

0

1

T � u
dW (u)

d) Argue that then X is a Gaussian process, and compute its expected value and covariance-function.

a) X is a diffusion process, with drift term given by y�X(t)
T�t , which is different from zero with probability

one. Thus it is not a martingale.

b) We apply Ito’s formula to this transformation, with f(t, x) = x�y
T�t . Thus ft(t, x) =

x�y
(T�t)2 , fx(t, x) =

1
T�t

and fxx(t, x) = 0. So

dR(t) =

✓
X(t)� y

(T � t)2
+

y �X(t)

T � t
⇥

1

T � t
+ 0

◆
dt+ �

1

T � t
dW (t)

=
�

T � t
dW (t).
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c) In view of the last exercise, it follows that

R(t) = R(0) +

Z t

0

�

T � u
dW (u)

On the other hand, X(t) = (T � t)R(t) + y. Therefore

X(t) = (T � t)R(0) + �(T � t)

Z t

0

1

T � u
dW (u) + y

As X(0) = TR(0) = x, it follows that R(0) = x/T . Thus

X(t) = (T � t)x/T + �(T � t)

Z t

0

1

T � u
dW (u) + y.

d) For each t, X(t) is a sum of a deterministic term ((T � t)x/T ) with an Ito’s integral which is known to
have a normal distribution. Thus X is indeed a Gaussian process. Regarding its expected value:

E[X(t)] = E[(T � t)x/T + �(T � t)

Z t

0

1

T � u
dW (u) + y]

= (T � t)x/T + y + �(T � t)E
Z t

0

1

T � u
dW (u)

�

= (T � t)x/T + y

in view of the Ito’s isometry. The covariance-function: assume that s < t, so that

Cov(X(t), X(s)) = Cov
⇣
(T � t)x/T + �(T � t)

Z t

0

1

T � u
dW (u) + y,

(T � s)x/T + �(T � s)

Z s

0

1

T � u
dW (u) + y

⌘

= Cov

✓
�(T � t)

Z t

0

1

T � u
dW (u),�(T � s)

Z s

0

1

T � u
dW (u)

◆

= �2(T � t)(T � s)

⇢
Var

✓Z s

0

1

T � u
dW (u)

◆

+Cov

Z t

s

1

T � u
dW (u),

Z s

0

1

T � u
dW (u)

��

= �2(T � t)(T � s)

Z s

0

1

(T � u)2
du+ 0 = �2(T � t)(T � s)

✓
1

T � s
�

1

T

◆

= �2(T � t)
s

T
.

17. Let X = {X(t), t � 0} and Y = {Y (t), t � 0} be two stochastic processes satisfying the following system of
SDE’s:

dX(t) = ↵X(t)dt+ Y (t)dW (t)

dY (t) = ↵Y (t)dt�X(t)dW (t)

with X(0) = x0 and Y (0) = y0, deterministic constants.

a) Show that R = {R(t), t � 0}, with R(t) = X2(t) + Y 2(t), is deterministic.

b) Compute E[X(t)] and Cov(X(t), Y (t)) and determine for which value of ↵ the process R becomes a deter-
ministic constant.
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a) Compute first dX2(t) and dY 2(t), using Ito’s formula, with f(t, x) = x2, fx(t, x) = 2x and fxx(t, x) = 2:

dX2(t) = (2↵X2(t) +
1

2
2Y 2(t))dt+ 2X(t)Y (t)dW (t)

dY 2(t) = (2↵Y 2(t) +
1

2
2X2(t))dt� 2X(t)Y (t)dW (t)

Therefore
dR(t) = (2↵(X2(t) + Y 2(t)) +X2(t) + Y 2(t))dt+ 0dW (t) = (2↵+ 1)R(t)dt

Therefore R has zero volatility, and thus it is a deterministic process.

b) The SDE for the process X can also be written as follows, in integral way:

X(t) = X(0) + ↵

Z t

0
X(s)ds+

Z t

0
Y (s)dW (s)

Applying the expect value operator, one gets the following:

E[X(t)] = X(0) + ↵

Z t

0
E[X(s)]ds

(in view of the Ito’s isometry). Let f(t) = E[X(t)]; then if we differentiate the previous equation, we end
up with the following ODE:

f 0(t) = ↵f(t)

whose solution is f(t) = f(0) + e↵t, i.e.,

E[X(t)] = X(0) + e↵t.

18. For a > 0, define a the process W̃ = {W̃ (t), t � 0}, where W̃ (t) = 1p
a
W (at). Show that W̃ is also a Brownian

motion.
In order to prove that it is a Brownian motion, we need to prove the following assertions:

– W̃ (0) = aW (0) = 0

– It has continuous sample paths (as W also has continuous sample paths)

– If s < t:

W̃ (t)� W̃ (s) =
1
p
a
(W (at)�W (as))

⇠ N

 
1
p
a
,

✓
1
p
a

◆2

(at� as)

!

⇠ N (0, t� s)

in view of the properties of the normal distribution.

– If u < s < t, then au < as < at, and therefore W (at)�W (as) is independent of W (au). Multiplying by
1p
a

won’t change this.

Thus W̃ is indeed a Brownian motion.

19. Let W and W ⇤ be two independent Brownian motions, and define the processes X = {X(t), t � 0} and
Y = {Y (t), t � 0} as follows:

X(t) = x+ µXt+ �XW (t), Y (t) = y + µY t+ �Y (⇢W (t) +
p
1� ⇢2W ⇤(t))

with �X(�Y ) > 0 and |⇢|  1.

a) Show that X is a Brownian motion but not a standard one. In particular, derive the two first order
moments of X(t). Is X a martingale?

b) Show that {⇢W (t) +
p
1� ⇢2W ⇤(t), t � 0} is a Brownian motion.

c) What is the relationship between X and Y when ⇢ = 0? And when ⇢ = 1 or ⇢ = �1?
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d) Show that the path-wise covariation of X and Y over [0, t] is given by

[X,Y ]t = lim
n!1

nX

i=1

�
X(t i

n )�X(t i�1
n )

� �
Y (t i

n )� Y (t i�1
n )

�
= ⇢�X�Y t.

a) As µXt is a continuous function in t, it follows that {X(t)} has continuous sample paths. Moreover,
the increments are independent, in view of independent increments of the Brownian motion. Also, as
X(t + s) � X(t) = µXs + �X(W (t + s) � W (t))

d
= µXs + W (s), does not depend on t. Note that this

property is not exactly the way we define stationary increments, and so we will take a more general
definition of stationary process. In fact although X(t+ s)�X(t) 6= X(s), still X(t+ s+ z)�X(t+ z) =
X(t + s) �X(t), for all t, s, z, where the equalities should be read in distribution sense. Also X(0) = x
and X(t) ⇠ N(x + µXt + �2

Xt), due to the properties of the normal distribution, and therefore X is a
non-standard Brownian motion.

b) It follows directly from the properties of Brownian motion and the fact that a linear combination of
independent normal variables is still a normal distribution. Also note that E[⇢W (t) +

p
1� ⇢2W ⇤(t)] = 0

and Var[⇢W (t) +
p
1� ⇢2W ⇤(t)] = ⇢2t+ (1� ⇢2)t = t.

c) If ⇢ = 0 then Y (t) = y+ µY t+ �Y W ⇤(t)) and therefore X and Y are independent, as W and W ? are also
independent. If ⇢ = 1 then Y (t) = y+µY t+�Y W (t)) and therefore X and Y are perfectly correlated, also
in sample path, meaning that for all w 2 ⌦, Y (t)(w)�y�µY t = X(t)(w)�x�µXt. If ⇢ = �1, it is similar to
the last case, except that Y (t) = y+µY t��Y W (t)) meaning that Y (t)(w)�y�µY t = �X(t)(w)+x+µXt.

d) Expand the formula:

[X,Y ]t = lim
n!1

nX

i=1

�
X(t i

n )�X(t i�1
n )

� �
Y (t i

n )� Y (t i�1
n )

�
= lim

n!1

nX

i=1

�
µX

t
n + �X(W (t i

n )�W (t i�1
n ))

�

=
⇣
µY

t
n + �Y ⇢(W (t i

n )�W (t i�1
n )) + �Y

p
1� ⇢2(W ⇤(t i

n )�W ⇤(t i�1
n ))

⌘

d
= lim

n!1

nX

i=1

�
µX

t
n + �XW ( t

n )
� ⇣

µY
t
n + �Y ⇢W ( t

n ) + �Y

p
1� ⇢2W ⇤( t

n ))
⌘

= lim
n!1

ntµXµY

n2
+ �X�Y ⇢ lim

n!1
W ( t

n ) (†)

= �X�Y ⇢ lim
n!1

1

n

nX

i=1

nW 2( t
n )

= �X�Y ⇢t

where in the fifth equality (†), we used the fact that W and W ⇤ are independent, and with zero mean,
and in the last equation we used the strong law of large numbers, a long with the fact that

E[nW 2( t
n )] = n

t

n
= t.

20. Consider the processes {X(t) : t � 0} and B(t) : t � 0}, where

X(t) = W (t)� tW (1)

B(t) = (t+ 1)X( t
t+1 )

Show that {B(t), t � 0} is also a Brownian motion.

21. Let X and Y be two Ito processes, with respect to the same Brownian motion W .

a) Show that X + Y = {X(t) + Y (t), t � 0} is also an Ito process (using their integral representations).

b) Prove that
d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

hint: X(t)Y (t) = 1
2 ((X + Y )2(t)�X2(t)� Y 2(t))
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a) Consider the following integral representations of the stochastic processes:

X(t) = x0 +

Z t

0
µX(s,X(s))ds+

Z t

0
�X(s,X(s))dW (s)

Y (t) = y0 +

Z t

0
µY (s, Y (s))ds+

Z t

0
�Y (s, Y (s))dW (s)

(note that we are assuming here that X and Y are driven by the same Brownian motion, in the sample-
path meaning. What happens if this is not true?) where µX , µY ,�X and �Y are stochastic processes with
some regular properties (namely, they are F

W -adapted). Then if you sum X(t) and Y (t), for all t � 0:

(X + Y )(t) = X(t) + Y (t) = (x0 + y0) +

Z t

0
(µX(s,X(s)) + µY (s, Y (s)))ds

+

Z t

0
(�X(s,X(s)) + �Y (s, Y (s)))dW (s)

where, in view of the properties of µX and µY , µX + µy has the necessary regularity conditions (in
particular, it is F

W -adapted). Moreover, the previous result holds because both the Riemann and the
Ito’s integrals are additive. (If you wish, prove that the Ito integral is additive, using the definition of Ito
integrals).

b) Using the Ito’s formula: d(X2(t)) = 2X(t)dX(t) + (dX(t))2 (prove it; trivial exercise) and similarly for
Y . Moreover X + Y is also an Ito process, and

d(X(t) + Y (t)) = d

✓
x0 +

Z t

0
µX(s,X(s))ds+

Z t

0
�X(s,X(s))dW (s)+

y0 +

Z t

0
µY (s, Y (s))ds+

Z t

0
�Y (s, Y (s))dW (s)

◆

= µ(t,X(t))dt+ �(t,X(t))dW (t) + µY (t, Y (t))dt+ �Y (t, Y (t))dW (t)

= dX(t) + dY (t)

Therefore, making Z(t) = X(t) + Y (t), we have

dZ2(t) = 2Z(t)dZ(t) + (dZ(t))2 = 2(X(t) + Y (t))(dX(t) + dY (t)) + (dX(t) + dY (t))2

= 2X(t)dX(t) + 2Y (t)dY (t) + 2X(t)dY (t) + 2Y (t)dX(t) + d2X(t) + d2Y (t) + 2dX(t)dY (t)

Therefore, using the expression found for dZ2(t),

1

2
d
�
(X(t) + Y (t))2 �X2(t)� Y 2(t)

�
=

1

2
dZ2(t)�

1

2
dX2(t)�

1

2
dY 2(t)

=
1

2
dZ2(t)�

1

2

�
2X(t)dX(t)� d2X(t)

�
�

1

2

�
2Y (t)dY (t)� d2Y (t)

�

= X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

22. Let M = {M(t), t � 0}, with

M(t) =
1

p
1� t

exp

✓
�

W 2(t)

2(1� t)

◆

a) Derive a stochastic differential equation such that M is a solution.
b) Show that M is a martingale.
c) Compute E[M(t)].

23. Consider the process X = {X(t), t � 0}, such that

dX(t) = a(t)dt+ �(t)dW (t)

where a = {a(t), t � 0} and � = {�(t), t � 0} are processes adapted to the filtration generated by W and such
that E[

R1
0 X2(s)ds] < 1.

a) Show, using the definition of martingale and properties of the Ito’s integral, that X will not be a martingale
with respect to the filtration generated by W unless a(t) = 0, 8t.
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b) For a certain function h, define the following process: M = {M(t), t � 0} with

M(t) = exp

✓
�

Z t

0
h(s)dW (s)�

1

2

Z t

0
h2(s)ds

◆

Prove that dM(t) = �h(t)M(t)dW (t). Is M a martingale?
c) Choosing h(t) = a(t)/�(t), prove that {X(t)M(t), t � 0} is also a martingale. Comment this result.

a) X is an Ito process, its integral representation is:

X(t) = x0 +

Z t

0
a(y)dy +

Z t

0
�(y)dW (y).

Then, assuming the necessary conditions for a and �:

E[X(t)|Fs] = E[X(s)] + E
Z t

s
a(y)dy

�
+ E

Z t

s
�(y)dW (y)

�
= X(s) +

Z t

s
E[a(y)]dy

(using the properties of the Brownian motion, namely independent increments, and the first Ito isometry).
Thus X will only be a martingale if and only if

R t
s E[a(y)]dy =

R t
s

R
⌦ a(y, w)dFy(w)dy = 0, 8s < t, where

F is the distribution function of a(y). But using the fundamental theorem of calculus, this means that
a(y, w) = 0, 8w 2 ⌦, y 2 R+, and thus we prove the result.

b) Let g(t, w(t)) = e�
R t
0 h(s)dW (s)� 1

2

R t
0 h2(s)ds and apply Ito’s rule in order to derive a SDE for M . Note that

this function is continuous in t (the first component) and in the second component (the Ito integral is
normally distributed). Then

gt(t,W (t)) = �
1

2
h2(t)M(t)

gx(t,W (t)) = �h(t)M(t)

gxx(t,W (t)) = h2(t)M(t)

where we use the short-hand notation for the partial derivatives. Then, from Ito’s formula, it follows that:

dM(t) = {�
1

2
h2(t)M(t) + 0 +

1

2
h2(t)M(t)}dt� h(t)M(t)dW (t) = �h(t)dW (t)

So M is also an Ito process, with drift equal to zero, and thus it is a martingale.

c) We use the formula (proved in the beginning of this test) for product of two diffusions (depending on the
same Brownian motion):

d(X(t)M(t)) = X(t)dM(t) +M(t)dX(t) + (dX(t))(dM(t))

= �X(t)
a(t)

�(t)
M(t)dW (t) +M(t)(a(t)dt+ �(t)dW (t))

+ (a(t)dt+ �(t)dW (t))

✓
�
a(t)

�(t)
M(t)dW (t)

◆

=

✓
�(t)�

a(t)

�(t)
X(t)

◆
M(t)dW (t)

where in the last derivation we used the multiplication table dtdW (t) = 0 and (dW (t))2 = dt. So the
process {X(s)M(s), s � 0} is a diffusion. If E[X2(t)M2(t)] < 1, then it is a martingale, as the drift
coefficient is zero.
Then, from what we know from Girsanov theorem, it means that M is the Radon-Nikodym of Q The risk
neutral measure) w.r.t. P (the standard measure of the Brownian motion W ). Note also that in fact we
can derive this measure Q: it is the measure of the process W̃ such that:

dW̃ (t) =
a(t)

�(t)
dt+ dW (t)

Then:
dX(t) = a(t)dt+ �(t)dW (t) = a(t)dt+ �(t)

✓
�
a(t)

�(t)
dt+ dW̃ (t)

◆
= �(t)dW̃ (t).
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24. Let W̃ = {W̃ (t) = a�1/2W (at), t � 0}, with a > 0.

a) Prove that W̃ is still a Brownian motion.

b) Let " = 1{W̃ (T )>0} and define the process M via M(t) = E["|F̃t], where F̃ is the filtration generated by
W̃ . Compute M . Is M a martingale?

a) The following properties hold, in view of the properties of the original Brownian motion W :

• W̃ (0) = a�1/2W (0) = 0

• Stationary increments: let t1, t2, . . . , tk, s � 0 and k 2 N, all arbitrary. Then

(W̃ (t1 + s)� W̃ (s), W̃ (t2 + s)� W̃ (s), . . . , W̃ (tk + s))� W̃ (s))

= (a�1/2(W (a(t1 + s))� a�1/2W (as)), a�1/2(W (a(t2 + s))� a�1/2W (as)), . . . ,

a�1/2(W (a(tk + s))� a�1/2W (as)))

= a�1/2((W (a(t1 + s))�W (as)), (W (a(t2 + s))�W (as)), . . . , (W (a(tk + s))�W (as)))

d
= a�1/2(W (at1),W (at2), . . . ,W (atk))

= (W̃ (t1), W̃ (t2), . . . , W̃ (tk))

where the d
= holds in view of the stationary increments for the Brownian motion.

A similar argument is used to prove independent increments, once again writing W̃ with the help of
W and using the properties of the Brownian motion.

• Normal distribution

P (W̃ (t)  x) = P (a�1/2W (at)  x) = P (W (at)  xa1/2) = �

✓
xa1/2
p
at

◆
= �

✓
x
p
t

◆

which proves that W̃ (t) ⇠ N(0, t).
• The continuity of the sample paths follows from the fact that

lim
t!t+0

W̃ (t) = a�1/2 lim
t!t+0

W (at) = a�1/2W (t0)

in view of the continuity of the Brownian motion.

Therefore we proved that W̃ is indeed a Brownian motion, and that {W̃ (t), t � 0}
d
= {W (t), t � 0}.

b) First of all, as W̃ is also a Brownian motion, we can prove this result for " = 1{W (T )>0} and M defined,
accordingly, as M(t) = E["|Ft], where F is the martingale generated by the Brownian motion W . Then,
for t > 0:

M(t) = E[1{W (T )>0}|Ft] = P (W (T ) > 0|Ft) = P (W (T )�W (t) +W (t) > 0|Ft)

= P (W (T )�W (t) > �W (t)) = P (Z > �W (t)) = 1� �

✓
W (t)
p
T � t

◆

where Z ⇠ N(0, T � t) and is independent of Ft, in view of the properties of the Brownian motion
(independent increments). So M = {M(t) = 1� �( W (t)p

T�t
), t � 0}. Regarding the martingale property:

• The process M is clearly F-adapted: 1� �( W (t)p
T�t

) 2 Ft.
• E[|M(t)|] = E[M(t)] 2 (0, 1), in view of the definition of the indicator function 1.
• For t > s, arbitrary, it follows that Fs 2 Ft. Moreover, FM

t = Ft, 8t, by definition of M(t), where
F

M denotes the filtration generated by M . Therefore, from the properties of conditional expectation:

E[M(t)|FM
s ] = E [E["|Ft]|Fs] = E[✏|Fs] = M(s).

25. Let Z = {Z(t), t � 0}, where:

Z(t) = (1� t)

Z t

0

dW (s)

1� s

a) Compute the expected value of Z(t) and its covariance function Cov(Z(t), Z(s)).
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b) Show that:

Z(t) = W (t)� (1� t)

Z t

0

W (s)

(1� s)2
ds

26. Define Y (t) = W (t)� tW (1), for t 2 [0, 1].

a) Derive the moment generator function of Y (t) (hint: the moment generator function for a normal distri-
bution, with expected value µ and variance �2 at the point a is equal to eaµ+

1
2�

2a2

)

b) Prove that its covariance is equal to:

Cov(Y (t), Y (s)) = s(1� t), s < t 2 (0, 1)

c) Is Y a Brownian motion? Justify.

27. Let Y = max(W 2(1) + (W (2)�W (1))2,W 2(2)).

a) Prove that
Y = W 2(2) + 2W (1)(W (1)�W (2))1{W (1)(W (1)�W (2))>0}.

b) Derive E[Y ].
(recall that

R1
0 xfN(0,1)(x)dx = 1p

2⇡
).

28. Let X = {X(t), t � 0} and Y = {Y (t), t � 0} be stock prices of two assets, such that:

dX(t) = µXX(t)dt+ �XX(t)dW (t)

dY (t) = µY Y (t)dt+ �Y Y (t)dW (t)

where W = {W (t), t � 0} is a Brownian motion.

a) Does there exist a function f such that f(t,X(t)) = W (t), 8t?

b) Identify the process X(t)Y (t).

29. Let {W (t), t � 0} be a Brownian motion, and for t 2 [0, 1], define

X(t) = W (t)� tW (1)

a) Show that X = {X(t), t 2 [0, 1]} has normal distribution, and compute its covariance function.

b) For t � 0, define

Y (t) = (1 + t)X

✓
t

1 + t

◆

Show that Y is a Brownian motion.

30. Let M = {M(t), t � 0}, with

M(t) = exp

⇢
�
1

2

Z t

0
b2(s)ds�

Z t

0
b(s)dW (s)

�
.

Derive the corresponding stochastic differential equation. Is M an integrable process?

31. Define the process X = {X(t) = W (t)� tW (1), t 2 [0, 1]}. This process is known as the Brownian bridge.

a) Derive the quadratic variation of the Brownian bridge X.

b) Determine the mean and covariance functions of X.

c) Every other continuous Gaussian process indexed by the interval [0, 1] that has the same mean and
covariance function as the Brownian bridge is also a Brownian bridge. Show that the process Z defined by
{Z(t) = tW ( 1t � 1), t 2 (0, 1]}, with Z(0) = 0, is a Brownian bridge.
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a)

[X,X]t = lim
n!1

nX

i=1

⇣
W ( tin )�

ti
nW (1)�W ( t(i�1)

n )� t(i�1)
n W (1)

⌘2

= lim
n!1

nX

i=1

⇣
W ( tin )�W ( t(i�1)

n )� t
nW (1)

⌘2

Let Zi = W ( tin )�W ( t(i�1)
n )� t

nW (1). Then it follows that Zi is normally distributed (sum of normally
distributed random variables), with E[Zi] = 0 and

Var[Zi] = Var
h
W ( tin )�W ( t(i�1)

n )
i
+

✓
t

n

◆2

Var[W (1)]� 2
t

n
Cov

⇣
W ( tin )�W ( t(i�1)

n ),W (1)
⌘

=
t

n
+

✓
t

n

◆2

� 2
t

n

✓
ti

n
�

t(i� 1)

n

◆
=

t

n

✓
1�

t

n

◆

Moreover, {Zi}i2N is a sequence of i.i.d. random variables. Therefore, by the strong law of large numbers:

lim
n!1

nX

i=1

✓
W ( tin )�W ( t(i�1)

n )�
t

n
W (1)

◆2

= lim
n!1

n
nX

i=1

Z2
i

n
= lim

n!1
n

t

n

✓
1�

t

n

◆
= t.

b)

E[X(t)] = E[W (t)� tW (1)] = 0.

Cov(X(t), X(s)) = Cov(W (t)� tW (1),W (s)� sW (1))

= Cov(W (t),W (s))� sCov(W (t),W (1))� tCov(W (s), 1) + tsVar[W (1)]

= min(t, s)� st� st+ ts = min(s, t)� st.

c)

E[Z(t)] = E[tW ( 1t � 1)] = 0

Cov(Z(t), Z(s)) = Cov(tW ( 1t � 1), sW ( 1s � 1)) = stCov(W ( 1t � 1),W ( 1s � 1))

= st (min(1/t, 1/s)� 1) = min(s, t)� st.

32. Derive the variation of order 3, defined as follows;

lim
n!1

nX

i=1

✓
W

✓
t
i

n

◆
�W

✓
t
i� 1

n

◆◆3

for a Brownian motion, knowing that the moments of a normal distribution of odd order are zero.

33. Let X = {X(t) = tW (t), t � 0}, where {W (t), t � 0} is a Brownian motion. Derive the quadratic variation
[X,X]t, for all t.

34. Let X be the solution of the SDE:

dX(t) = ↵X(t)dt+ �X�(t)dB(t), X(0) = x0

where ↵,� and x0 are constants.

a) Determine the constants a, b and c so that the process
�
Y (t) = exp{�aXb(t) + ct}, t � 0

 
is a martingale.

a) Compute E[X(t)] when � = 0.5.

35. Let g be a function such that the Ito’s integral is well defined: I(t) =
R t
0 g(s)dW (s), for all t � 0. Define the

continuous time stochastic process {M(t), t � 0}, with:

M(t) = I2(t)�

Z t

0
g2(s)ds
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Prove that {M(t), t � 0} is a continuous-time martingale.

In order to prove the assertion, we use Ito’s formula do derive the SDE corresponding to M and we see that
its drift is zero:

dM(t) = dI2(t)� g2(t)dt =
1

2
g2(t)dt+ 2g(t)I(t)dW (t)� g2(t)dt = 2g(t)I(t)dW (t)

The adaptability of M w.r.t the filtration, as well as the integrability condition, are also both consequences of
the fact that M is solution of the SDE.

36. Fix s 2 [0,1) and define Y (t) = W (t+ s)�W (s), for t � 0. Prove that {Y (t), t � 0} is also a Brownian motion
with the same drift and scale parameters.

37. Prove that the Itô’s integral for any process in L
2 is an martingale.

38. Let f : [0, T ] 7! R be a deterministic function, with
R t
0 f2(s)ds < 1. Prove the following:

a)
R t
0 f(s)dWs has normal distribution, and provide the parameters.

b) Prove that the process
n
exp

⇣R t
0 f(s)dWs �

1
2

R t
0 f2(s)ds

⌘
, t � 0

o
is a martingale.

39. By applying the generalized Itô’s formula to the 2-dimensional process {(Xt, Yt), t � 0} with the function
F (x, y) = xy, show the integration by parts formula

XtYt = X0Y0 +

Z t

0
XsdY s+

Z t

0
YsdXs + V AR[X,Y ]t

assuming the necessary integrability conditions which are necessary to make sense of the previous formula. In
which case we get the usual formula for the derivative of the product?

40. a) Let {W (t), t � 0} be a Brownian motion.

lim
n!1

nX

i=1

⇣
W ( tin )�W ( t(i�1)

n )
⌘2

= t

for 0 < t
n < . . . < ti

n < . . . < tn
n = t. Use this result to calculate

lim
n!1

nX

i=1

W
�
ti
n

�
⇥

⇣
W

�
ti
n

�
�W

⇣
t(i�1)

n

⌘⌘

(You may want to use the following relation: 2a(b� a) = (b2 � a2)� (b� a)2)

b) Prove that any continuous stochastic process or function that has non-zero quadratic variation must have
infinite total variation.

a) We use the suggestion, with a = W (ti/n) and b = W (t(i� 1)/n). Then:

lim
n!1

nX

i=1

W ( tin )
⇣
W ( tin )�W ( t(i�1)

n )
⌘
= �

1

2

"
lim
n!1

nX

i=1

⇣
W 2( t(i�1)

n )�W 2( tin )
⌘

� lim
n!1

nX

i=1

⇣
W ( tin )�W ( t(i�1)

n )
⌘2
#

=
1

2

"
lim

n!1

nX

i=1

⇣
W 2( tin )�W 2( t(i�1)

n )
⌘
+ t

#

=
1

2

⇥
W 2(t) + t

⇤

in view of the quadratic variation of the Brownian motion being equal to t.

43



CHAPTER 4. STOCHASTIC CALCULUS

b) Let {X(t), t � 0} and for any t, define the partition 0 = t0  t1  . . .  tn = t. Then

[X,X]t = lim
n!1

nX

k=1

(X(tk)�X(tk�1))
2
 lim

n!1

nX

k=1

|X(tk)�X(tk�1)|⇥max
i

|X(ti)�X(ti�1)|

The continuity of X implies that lim
n!1

max
i

|X(ti) �X(ti�1)| = 0 and thus, as the quadratic variation is
positive and finite, it means that we need to have:

lim
n!1

nX

k=1

|X(tk)�X(tk�1)| = 1

which proves the result.

41. Let {X(t) = W (t)� tW (1), t 2 [0, 1]} be the Brownian bridge.

a) Does {X(t), t 2 [0, 1]} have independent increments?

b) Let Y (t) = X(1)� t. Show that {Y (t), t 2 [0, 1]} is again a Brownian bridge, i.e. has the same distribution
as {X(t), t 2 [0, 1]}.

c) Calculate the conditional expectation E [X(t)|X(s)], for 0  s < t  1.

a) For s < t:

Cov(X(t)�X(s), X(s)) = Cov(W (t)�W (s)� (t� s)W (1),W (s)� sW (1))

= Cov(W (t)�W (s),W (s))� sCov(W (t)�W (s),W (1))

� (t� s) Cov(W (1),W (s)) + s(t� s)Var (W (1))

= 0� s(t� s)� (t� s)s+ s(t� s) = s(s� t) 6= 0

which means that it does not have independent increments.

c) In order to solve this exercise we may use the alternative formulation of the Brownian bridge:

X(t) = W (t)� tW (1) = (1� t)W

✓
1

1� t

◆

Then

E[X(t)|X(s)] = E

(1� t)W

✓
1

1� t

◆���� (1� s)W

✓
1

1� s

◆�

=
1� t

1� s
E

(1� s)W

✓
1

1� t

◆���� (1� s)W

✓
1

1� s

◆�

=
1� t

1� s
(1� s)W

✓
1

1� s

◆
=

1� t

1� s
X(s).

42. Show, from the definition of Itô integral, that:
Z t

0
sdW (s) = tW (t)�

Z t

0
W (s)ds.
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By definition of Itô integral, and assuming all the necessary conditions, it follows that:
Z t

0
sdW (s) = lim

n!1

nX

i=1

ti�1 (W (ti)�W (ti�1)) = lim
n!1

nX

i=1

ti�1W (ti)� ti�1W (ti�1)

= lim
n!1

nX

i=1

ti�1W (ti)� ti�1W (ti�1) + tiW (ti)� tiW (ti)

= lim
n!1

nX

i=1

(tiW (ti)� ti�1W (ti�1))� (ti � ti�1)W (ti)

= lim
n!1

nX

i=1

(tiW (ti)� ti�1W (ti�1))� lim
n!1

nX

i=1

(ti � ti�1)W (ti)

= tW (t)�

Z t

0
W (s)ds

in view of the telescopic property, the usual definition of integral, and the finiteness of all the limits, where
0 = t0  t1 = 1

n  t2 = 2
n . . .  tn = t.

43. Let b 2 R be a constant. For some point x 2 R, let:

X =

⇢
X(t) = x+

Z t

0
bX(s)ds+W (t), t � 0

�

a) Show that
dX(t) = bX(t)dt+ dW (t)

admits one unique strong solution.

b) Show that X(t) may be written as follows:

X(t) = ebt

x+

Z t

0
e�bsdW (s)

�

a) The SDE admits one unique solution if the following conditions on the drift (µ(t,X(t)) = bX(t)) and
diffusions (�(t,X(t)) = 1) parameters hold:

• |µ(t, x)� µ(t, y)| = |bx� by| = |b||x� y|

• |�(t, x)� �(t, y)| = |1� 1| = 0

• |µ(t, x)|+ |�(t, x)| = |bx|+ 1 = |b|(|x|+ 1).

b) Let Y (t) = x+
R t
0 e�bsdW (s). Then, applying the derivative, it follows that

dY (t) = e�btdW (t)

Now let f(t, y) = ebty, with @f
@t = bebty, @f

@y = ebt and @2f
@y2 = 0. Then in view of Itô’s formula, it follows

that:
debtY (t) =


bebtY (t) + ebt ⇥ 0 +

1

2
e�bt

⇥ 0

�
dt+ ebte�btdW (t) = bebtY (t)dt+ dW (t)

i.e.:
dX(t) = bX(t) + dW (t).

As the SDE admits only one solution, then it means that in fact:

X(t) = x+

Z t

0
bX(s)ds+W (t) = bX(t) + dW (t).

44. Let U a random variable, with uniform distribution in the interval [0, 1], independent of W . Define a new processn
W̃ (t), t � 0

o
, with:

W̃ (t) =

(
W (t) t 6= U

0 t = U
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Check if
n
W̃ (t), t � 0

o
is a Brownian motion.

The vectors (W (t1),W (t2), . . . ,W (tn)) and (W̃ (t1), W̃ (t2), . . . , W̃ (tn)) are equal unless U 2 {t1, t2, tn}, which
has probability zero (as U is a continuous random variable). Hence they have the same distributional properties.
However, contrary to the process {W (t)}, {W̃ (t)} does not have continuous sample paths with probability one.
In fact, limt!U W̃ (t) = W (U) but P (W (U) = 0) = 0. So with probability 1, W̃ has a discontinuity at U .

45. Let {W (1)(t), t � 0} and {W (2)(t), t � 0} be two independent Brownian motions. Consider the process {X(t), t �
0}, where

X(t) = a
⇣
W (1)(t) +W (2)(t)

⌘
.

Prove that for a particular choice of a, the process is also a Brownian motion.

46. Let 0 = t0 < t1 < ... < tn = 1 be partition of [0, 1]. Compute the stochastic integral

X(t) =

Z t

0
F (s)dW (s)

where F is the step function F (s) =
Pn�1

i=0 fi1(s2(ti,ti+1[), with fi’s being deterministic constants. Compute its
expected value, variance and covariance.

X(t) =

Z t

0
F (s)dW (s) =

Z t

0

n�1X

i=0

fi1(s2(ti,ti+1[)dW (s) =
n�1X

i=0

fi (W (ti+1)�W (ti))

By the first Ito’s isometry,
E [X(t)] = 0.

By the second Ito’s isometry,

Var[X(t)] = E[X(t)2]� E[X(t)]2 =

Z t

0
F 2(s)ds.

Finally, the covariance is

Cov(X(t), X(y)) = Cov

✓Z t

0
F (s)dW (s),

Z y

0
F (s)dW (s)

◆

= Var

✓Z y

0
F (s)dW (s)

◆
+Cov

✓Z t

y
F (s)dW (s),

Z y

0
F (s)dW (s)

◆

=

Z y

0
F 2(s)ds+ 0 (by independent increments, with t > y)

47. a) Consider the following equations:

dX(t) = µXX(t)dt+ �XX(t)dW (t)

dY (t) = µY Y (t)dt+ �Y Y (t)dW (t)

Derive the differential equation for X(t)Y (t). What can you say about this process, Z = {Z(t) =
X(t)Y (t), t � 0}?

b) Suppose now that X and Y are such that

dX(t) = µX(t)dt� Y (t)dW (t)

dY (t) = µY (t)dt+X(t)dW (t)

What kind of process is
�
R(t) = X2(t) + Y 2(t), t � 0

 
?

46



CHAPTER 4. STOCHASTIC CALCULUS

a) Both {X(t), t � 0} as {Y (t), t � 0} are geometric Brownian motion, driven by the same Brownian motion.
Moreover, using the fact that

dX(t)Y (t) = dX(t)Y (t) + x(t)dY (t) + (dX(t)))(dY (t))

it follows that

d(X(t)Y (t)) = (µXX(t)dt+ �XX(t)dW (t))Y (t) +X(t) (µY Y (t)dt+ �Y Y (t)dW (t))

+ (µXX(t)dt+ �XX(t)dW (t)) (µY Y (t)dt+ �Y Y (t)dW (t))

= (µX + µY + �X�Y )X(t)Y (t)dt+ (�X + �Y )X(t)Y (t)dW (t)

which means that the process {X(t)Y (t), t � 0} is a Geometric Brownian motion, with drift (µX + µY +
�X�Y ) and volatility (�X + �Y ).

b) As dX2(t) = 2X(t)dX(t) + (dX(t))2, and the same for dY 2(t), it follows that

dX2(t) + dY 2(t) = 2X(t)dX(t) + (dX(t))2 + 2Y (t)dY (t) + (dY (t))2

= 2µX2(t)dt� 2X(t)Y (t)dW (t) + µ2X2(t)(dt)2

+ Y 2(t)(dW (t))2 � 2µX(t)Y (t)dtdW (t)

+ 2µY 2(t)dt+ 2X(t)Y (t)dW (t) + µ2Y 2(t)(dt)2

+X2(t)(dW (t))2 + 2µX(t)Y (t)dtdW (t)

= 2µX2(t)dt+ Y 2(t)dt+ 2µY 2(t)dt+X2(t)dt

= (2µ+ 1)(X2(t) + Y 2(t))dt

which means that
�
R(t) = X2(t) + Y 2(t), t � 0

 
is a deterministic process, such that R(t) = R(0)e(2µ+1)t.
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Chapter 5

Stochastic Differential Equations

1. Use a stochastic representation result in order to solve the following boundary value problem in the domain
[0, T ]⇥ R:

�F

�t
+ µx

�F

�x
+

1

2
�2x2 �

2F

�x2
= 0

with F (T, x) = ln(x2), where µ and � are known.

2. In this exercise, we want to solve the following boundary problem:

�

�t
f(t, x) +

1

2

�2

�x2
f(t, x) = xf(t, x)

f(T, x) = 1 (5.1)

a) Compute d(sW (s)) and, using this result, prove that
Z T�t

0
W (s)ds =

Z T�t

0
(T � t� s)dW (s).

b) Argue that Z T�t

0
W (s) ds ⇠ N

✓
0,

(T � t)3

3

◆

c) Assume that

(Z|W (t) = x) = x(T � t) +

Z T�t

0
W (s)ds

Solve problem (5.1).
Note: the probability generating function of a normal distribution with expected value µ and variance �2

at the point s is eµs+
1
2�

2s2 .

a) Using Ito’s formula, it follows that

d(sW (s)) = W (s)ds+ sdW (s)

Therefore, if we integrate the above formula from time 0 to time T � t, it follows that:

sW (s)|s=T�s
s=0 =

Z T�t

0
W (s)ds+

Z T�t

0
sdW (s)

(T � t)W (T � t) =

Z T�t

0
(T � t)dW (s) =

Z T�t

0
W (s)ds+

Z T�t

0
sdW (s)

Z T�t

0
W (s)ds =

Z T�t

0
(T � t� s)dW (s).
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b) Ito’s integral are normally distributed, so it follows that
R T�t
0 W (s)ds is also normal distributed, in view

of the last question. Its expectation and variance are the following (use Ito’s isometries):

E
"Z T�t

0
W (s)ds

#
= E

"Z T�t

0
(T � t� s)dW (s)

#
= 0

E

2

4
 Z T�t

0
W (s)ds

!2
3

5 = E

2

4
 Z T�t

0
(T � t� s)dW (s)

!2
3

5 =

Z T�t

0
(T � t� s)2ds =

1

3
(T � t)3.

c) According to Feyman-Kac formula, it follows that the solution to problem (1) is given by:

f(t, x) = E[e�
R t
0 r(X(s))ds�(X(T ))|X(t) = x]

with, in this case, r(x) = x, and dX(t) = dW (t), i.e., X(T ) = X(t) + (W (T ) �W (t)). Thus we need to
compute:

f(t, x) = E[e�
R T
t W (s)ds

|W (t) = x]

= E[e�x(T�t)�
R T�t
0 W (s)ds] = e�x(T�t)gN(0, 13 (T�t)3)(�1)

where gY (s) is the moment generating function of the r.v. Y at point s. Thus:

f(t, x) = e�x(T�t)e�
1
3 (T�t)3).

3. Solve the following boundary value problems using the Feynman-Kac formula:

a) @u
@t + 1

2
@2u
@x2 = xu, with u(x, T ) = 1

b) @u
@t + ↵(✓ � x)@u@x + 1

2
@2u
@x2 = 0, with u(x, T ) = F (x)

4. Solve the following boundary value problem:

@F

@t
(t, x) +

1

2

@2F

@x2
(t, x) = 0

F (T, x) = x2
� x

where � is a known constant.
Recall that the solution of the PDE

�

�t
f(t, x) + µ(x)

�

�x
f(t, x) +

1

2
�(x)2

�2

�x2
f(t, x) = r(x)f(t, x)

f(T, x) = �(x)

is:
f(t, x) = E[e

R T
t �r(X(s))ds�(X(T ))|X(t) = x]

where X = {X(t), t � 0} is a diffusion with drift µ(.) and volatility �(.).
In this particular case, the diffusion is such that:

dX(t) = �dW (t),

which means that X(t) ⇠ N (0,�2t). Therefore,

f(t, x) = E[e�r(T�t)(X2(T )�X(T ))|X(t) = x] = e�r(T�t)(E[X2(T )|X(t) = x]� E[X(T )|X(t) = x])

= e�r(T�t)(E[(X(t) +X(T )�X(t))2|X(t) = x]� E[X(T )�X(t) +X(t)|X(t) = x])

= e�r(T�t)(E[(X(T )�X(t))2] + x2
� x) = e�r(T�t)(�2(T � t) + x2

� x)
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5. Consider the following boundary value problem:

@F

@t
�

1

1� t

@F

@x
+

1

2

@2F

@x2
= 0

F (T, x) = x2

Compute the solution of such problem.

6. Solve the following boundary value problem:

@F

@t
(t, x) +

1

2
�2x2 @

2F

@x2
(t, x) = 0, t 2 [0, T ], x > 0

F (T, x) = (ln(x))2

7. Solve the following differential equation:

@F (t, x)

@t
+ rx

@F (t, x)

@x
+

1

2
�2x2 @

2F (t, x)

@x2
= 0

for t 2 [0, T ], such that F (T, x) =
⇥
ln(x2)�K

⇤+.

8. Consider the following problem:

@F

@t
+ µ(t, x)

@F

@x
+

1

2
�2(t, x)

@2F

@x2
+ k(t, x) = 0

for t  T , with F (T, x) = g(x), and µ,� and k being known functions. Prove that the solution of this problem
is given by:

F (t, x) = E [g(X(T ))|X(t) = x] +

Z T

t
E [k(s,X(s))|X(t) = x] ds

where X is solution of the following SDE:

dX(s) = µ(s,X(s))ds+ �(s,X(s))dW (s), with X(t) = x.

Hint: Define Z(s) = F (s,X(s)) and apply Ito’s formula.

From Ito’s formula and the definition of F , it follows that

dZ(t) = �k(t,X(t))dt+ �(t,X(t))
@F (t, x)

dx
|x=X(t)dW (t)

Therefore

Z(T )� Z(t) = F (T,X(T ))� F (t,X(t)) = �

Z T

t
k(s,X(s))ds+

Z T

t
�(s,X(s))

@F (s, x)

dx
|x=X(s)dW (s)

Applying the conditional expectation (given that X(t) = x) and the terminal condition (F (T, x) = g(x)), it
follows that:

F (t, x) = E [F (t,X(t))|X(t) = x] = E [F (T,X(T ))|X(t) = x] + E
"Z T

t
k(s,X(s))ds

���X(t) = x

#

+ E
"Z T

t
�(s,X(s))

@F (s, x)

dx
|x=X(s)dW (s)

���X(t) = x

#

= E [g(X(T ))|X(t) = x] + E
"Z T

t
k(s,X(s))ds

���X(t) = x

#

in view of the first Ito’s isometry.

9. Derive the solution, F , of the following boundary problem:

@F (t, x)

@t
+ 2

@2F (t, x)

@x2
= 0

with F (T, x) = x2.
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Consider the following SDE:
dX(t) = 2dW (t)

Then it follows that, in view of the Feynman-Kac formula:

F (t, x) = E
⇥
X2(T )|X(t) = x

⇤

As X(T ) = 2W (T ), then X(t) = x means that W (t) = x/2. Then

F (t, x) = E
⇥
X2(T )|X(t) = x

⇤
= E

⇥
4W 2(T )|W (t) = 0.5x

⇤
= 4E

⇥
(W (T )�W (t) +W (t))2|W (t) = 0.5x

⇤

= 4E
⇥
(W (T )�W (t))2 +W 2(t) + 2(W (T )�W (t))W (t)|W (t) = 0.5x

⇤

= 4(T � t) + 4⇥ 0.52x2 + 0 = 4(T � t) + x2

in as consequence of the properties of the Brownian motion.

10. Consider the following boundary problem in [0, T ]⇥ R:

@F

@t
+ µ(t, x)

@F

@x
+

1

2
�2(t, x)

@2F

@x2
+ k(t, x) = 0

with F (T, x) = f(x). Prove that the solution can be written as:

F (t, x) = E [f(X(T ))|X(t) = x] +

Z T

t
E [k(s,X(s))|X(t) = x] ds

with X having dynamics:
dX(t) = µ(t,X(t))dt+ �(t,X(t))dW (t)

Applying Ito�s lemma to dF (t,X(t)), it follows that:

dF (t,X(t)) =

✓
@F

@t
+ µ(t,X(t))

@F

@x
+

1

2
�2t,X(t))

@2F

@x2

◆
dt+ �(t,X(t))

@F

@x
dW (t)

= �k(t,X(t))dt+ �(t,X(t))
@F

@x
dW (t)

Thus, integrating from t to T :

F (T,X(T ))� F (t,X(t)) = �

Z T

t
k(s,X(ds))ds+

Z T

t
�(s,X(s))

@F

@x
dW (s).

Applying conditional expectation, it follows that:

E [F (T,X(T ))|X(t) = x] = F (t, x)�

Z T

t
E [k(s,X(s))|X(t) = x] ds+ 0

(in view of the first Ito’s isometry). Applying the terminal condition, it follows that:

F (t, x) = E [f(X(T ))|X(t) = x] +

Z T

t
E [k(s,X(s))|X(t) = x] ds

11. Solve the following differential equation:

@F (t, x)

@t
+ rx

@F (t, x)

@x
+

1

2
�2x2 @

2F (t, x)

@x2
= 0

for t 2 [0, T ], such that F (T, x) = ln x2+K
2 .
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Chapter 6

Black Scholes Model

1. Consider the usual Black-Scholes model but suppose that we introduce a new contract, whose payoff at maturity
date T is equal to S2(T ). Derive that the arbitrage-free pricing at time t.

Note: E[etX ] = etµ+
1
2�

2t, X ⇠ N (µ,�2).

Considering the Black-Scholes model, the risk-neutral valuation formula states that the arbitrage-free price,
⇧(t, s), of the claim �(S(T )) is given by:

⇧(t, s) = e�r(T�t)EQ[�(S(T )|S(t) = s]

where r is the rate interest (here assumed constant and continuously-compounded) and Q is the Martingale
measure.
In this case �(S(T )) = S2(T ), and the dynamics of S, under the Martingale measure, is dS = rSdt+ �SdW ,
whose solution is the Geometric Brownian Motion. Therefore

EQ[�(S(T ))|S(t) = s] = EQ[S2(T )|S(t) = s] =

Z 1

�1
s2e2zfN((r� 1

2�
2)(T�t),�2(T�t))(z)dz = s2E

⇥
e2Z

⇤

= s2e2(r�
1
2�

2)(T�t)+�2(T�t).

2. Consider an option whose payoff is equal to K if and only if the stock price of the underlying asset at the
maturity date T falls in the interval [a, b]. Assuming the Black-Scholes model, derive the arbitrage-free pricing
of this derivative.

3. Consider a standard Black-Scholes model of the form:

dS(t) = µS(t)dt+ �S(t)dW (t)

dB(t) = rB(t)dt

Now assume a fixed exercise date T , and define the following contingent T -claim by:

X =
1

S(T )

Derive an expression for the arbitrage free price process, ⇧(t;x), for this claim.

4. Consider the standard Black-Scholes model. Now assume that you write a contract regarding a digital call, with
strike price K and exercise date T . This contract will give you the fixed amount of A if S(T )  K, and zero
otherwise. Compute the price at time t = 0 of such a call.

5. Consider the standard Black-Scholes model and a option whose payoff is lnS(T ) (note that if S(T ) < 1 then this
means that the holder of the option has to pay a positive amount to the writer). Determine the arbitrage-free
price for this claim at any time t < T , assuming a constant interest rate r.
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In this case, as we have that under the martingale measure Q, the stock price follows a geometric brownian
motion with drift r and volatility �, it follows that its logarithm follows the following:

S(T ) = S(t)e(r�
1
2�

2)(T�t)+�W̃ (T�t)
, lnS(T ) = lnS(t) + (r � 1

2�
2)(T � t) + �W̃ (T � t)

Thus:

⇡(t) = e�r(T�t)EQ[lnS(t) + (r � 1
2�

2)(T � t) + �W̃ (T � t)]

= e�r(T�t)
⇣
lnS(t) + (r � 1

2�
2)(T � t) + �EQ[W̃ (T � t)]

⌘

= e�r(T�t)
�
lnS(t) + (r � 1

2�
2)(T � t)

�

where ⇡(t) denotes the price of the contract at time t.
Note: in order to have a high formalism in the resolution of this question, please note that: under the “initial”
measure P , the stock price follows a geometric Brownian motion with drift r and volatility �, it follows that
its logarithm follows the following:

S(T ) = S(t)e(µ�
1
2�

2)(T�t)+�W (T�t),

where W is the standard Brownian motion. Then

S(T ) = S(t)e(µ�
1
2�

2/2)(T�t)+�(W (T�t)+µ�r
� (T�t)�µ�r

� (T�t))

= S(t)e(r�
1
2�

2)(T�t)+�(W (T�t)+µ�r
� (T�t))

= S(t)e(r�
1
2�

2)(T�t)+�W̃ (T�t)

where W̃ (t) = W (t) + µ�r
� t, which, under Q and invoking the Girsanov theorem, is a standard Brownian

motion.

6. Consider the standard Black-Scholes model. Derive the arbitrage free price process for the claim X, where X is
given by S(T1)

S(T0)
. The time T0 and T1 are given and the claim is paid out at time T1.

7. The price of a traded security follows a geometric Brownian motion with drift 0.04 and volatility 0.2. Its current
price is 40. A brokerage firm is offering, at cost 10, an investment that will pay 100 at the end of 1 year if
S(1) > (1 + x)40. Assume that the continuously compounded interest rate is 0.02. If this investment is not to
give rise to an arbitrage, what is the value of x?

Use the Black-Scholes model, under which the price of a derivative whose contract function is F (S(T )) is given
by:

⇡(t) = e�r(T�t)EQ[F (S(T ))|S(t) = s]

where, in this case,

– r = 2%

– T = 1

– F (S(1)) = 100{S(1)>(1+x)40}

– Q is the measure such that under Q, the stock price follows the following dynamics:

dS(t) = 0.02S(t)dt+ 0.2S(t)dW (t)

i.e., S(t) is given by S(t) = S(0)e(r�0.5⇥0.22)t+0.2W (t). Thus, under Q:

S(1) = S(0)e(0.02�0.5⇥0.22)+0.2W (1)
⇡ 40e0.2W (1)
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So the martingale price of this derivative is the following:

⇡(0) = e�0.02100⇥ P (40e0.2W (1) > (1 + x)40) = 98.0199P (W (1) > (1 + x)/0.2) = 10.

Therefore in order to have non-arbitrage, the value x has to be such that

98.0199

✓
1� �(

1 + x

0.2
)

◆
= 0.10

Note that the Black-Scholes formula states that the price at time t of a derivative whose contract function is
F (S(T )) is:

⇡(t) = e�r(T�t)EQ[F (S(T ))|S(t) = s]

where Q is the (unique) martingale-equivalent measure.

8. Consider the standard Black-Scholes model. Derive the arbitrage free price process for the cash-or-nothing
option, whose payoff function is

⇧(S;T ) = B1{S(T )>K}

Explain briefly the behaviour of ⇧ as a function of T (keeping all the parameters constant) and K (keeping all
the parameters constant).

Using the Black-Scholes formula, we denote by Q the risk-neutral measure of W̃ , such that:

dS(t) = µS(t)dt+ �S(t)dW (t) = µS(t)dt+ �Std(W̃ (t) + r�µ
� t) = rS(t)dt+ �StdW̃ (t).

Then it follows that the price at time t of such option, when the underlying price is s, is given by:

⇧(s, t) = e�r(T�t)EQ[B1{S(T )>K}|S(t) = s] = e�r(T�t)BQ(S(T ) > K|S(t) = s)

= e�r(T�t)BQ(S(t)e(r�1/2�2)(T�t)+�W̃ (T�t) > K|S(t) = s)

= e�r(T�t)BQ

✓
W̃ (T � t) >

ln(K/s)� (r � 1/2�2)(T � t)

�
p
T � t

◆

= e�r(T�t)B�

✓
� ln(K/s) + (r � 1/2�2)(T � t)

�
p
T � t

◆

Remark that ⇧ is a decreasing function of K, as expected. The behaviour of the price as a function of time T
is more complicated, probably non-monotonic. If you want to check this, plot this function.

9. Using the Black-Scholes model, compute the value at time t = 0 of an option with underlying stock price S and
payoff:

g(S(T )) = (ln(S2(T )�K))+

with strike price K = 6 and maturity T = 1.

10. Assume the Black-Scholes model. Find the arbitrage free price of the option whose payoff at maturity T is given
by:

g(S(T )) = max(S(T ), S(0)erT )�K

where K > 0 (this option is known as break forward).

Assuming the Black-Scholes model, it follows that the price at time 0 is given by:

⇡(0;X) = e�rTEQ
⇥
max(S(T ), S(0)erT )�K|S(0)

⇤

where, under Q, S(T ) = S(0)e(r�0.5�2)T+�W (T ). So

⇡(0;X) = e�rTEQ
h
max(S(0)e(r�0.5�2)T+�W (T ), S(0)erT )�K|S(0)

i

= e�rTS(0)erTEQ
h
max(e�0.5�2T+�W (T ), 1)|S(0)

i
�Ke�rT

= S(0)EQ
h
max(e�0.5�2T+�W (T ), 1)|S(0)

i
�Ke�rT
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As e�0.5�2T+�W (T ) > 1 , �0.5�2T + �W (T ) > 0 , W (T ) > 0.5�T , it follows that

⇡(0;X) = S(0)�
⇣
0.5�

p

T
⌘
+ S(0)e�0.5�2T

Z 1

0.5�T
e�x�

✓
x
p
T

◆
dx�Ke�rT

11. Consider the following derivative X: the buyer of X obtains, at the maturity T , the value ln(S(T )), where S is
the stock price process. Derive its arbitrage free price and comment the result, notably in view of the possible
values of the payoff of this product.

According to the Black-Scholes formula, the price of this contract, under the martingale measure Q, is given
by:

⇧(t;X) = e�r(T�t)EQ [ln(S(T ))|S(t)]

where, under Q, S(T ) is given by:

S(T ) = S(t)e(r�0.5�2)(T�t)+�(W (T )�W (t)).

Therefore

⇧(t;X) = e�r(T�t)EQ[ln(S(T )) + (r � 0.5�2)(T � t) + � (W (T )�W (t)) |S(t)]

= e�r(T�t)
�
ln(S(T )) + (r � 0.5�2)(T � t)

�
.

Note that in fact it can happen that the buyer of this call actually receives money, as for some values, it can
happen that ln(S(T )) + (r � 0.5�2)(T � t) < 0, meaning that he may receive at time 0 money (instead of
paying). But this is not surprising, because upon maturity, the buyer exercises for sure its option (the way we
have written the contract function) and if S(t) < 1, when he exercises, he actually pays money to the seller of
the option.

12. Consider the Black-Scholes model, with the usual assumptions. Derive the price at time t < T years (where T
is the maturity) of a call option with contract function:

g(x) =

(
0 x  K

1 x > K

where K > 0. Assume a continuously compounded interest rate equal to r per year. In particular, provide the
price of this option at time 0 when K = S(0).

Using the assumptions from the Black-Scholes model, it follows that the price at time t < T is given by:

⇡(t;S(t) = s) = e�r(T�t)EQ
⇥
1S(T )>K |S(t) = s

⇤

where, under the probability measure Q, S is a GBM with drift parameter equal to r:

S(T ) = S(t)e(r�0.5�2)(T�t)+�(W (T )�W (t))

Therefore

⇡(t;S(t) = s) = e�r(T�t)PQ (S(T ) > K|S(t) = s)

= e�r(T�t)PQ

⇣
se(r�0.5�2)(T�t)+�(W (T )�W (t)) > K

⌘

= e�r(T�t)PQ

�
(r � 0.5�2)(T � t) + �(W (T )�W (t)) > ln(K/s)

�

= e�r(T�t)PQ

✓
(W (T )�W (t)) >

ln(K/s)� (r � 0.5�2)(T � t)

�

◆

= e�r(T�t)


1� �

✓
ln(K/s)� (r � 0.5�2)(T � t)

�
p
T � t

)

◆�

In particular, it follows that when K = S(0), the price is e�r(T�t)
h
1� �

⇣
�(r�0.5�2)(T�t)

�
p
T�t

)
⌘i

.
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